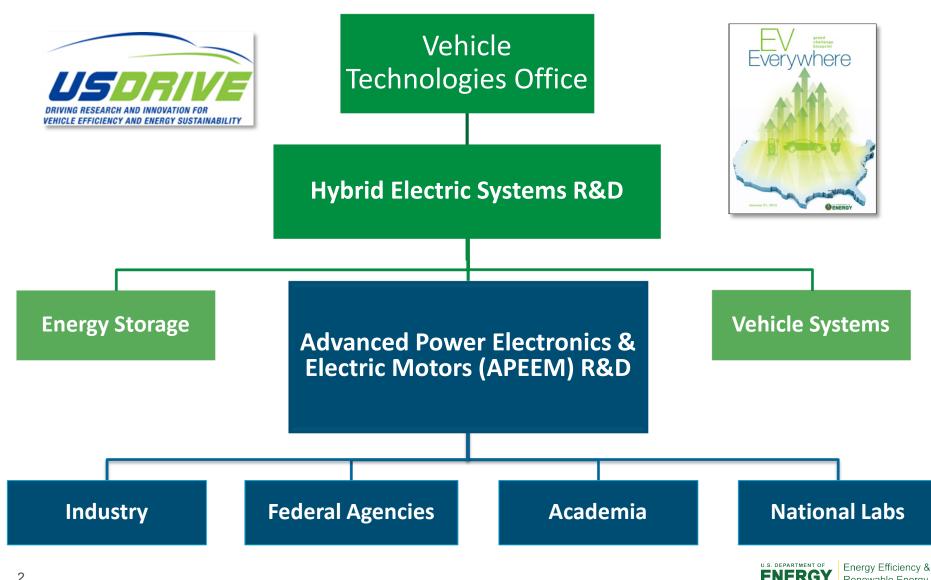
VEHICLE TECHNOLOGIES OFFICE

Energy Efficiency & Renewable Energy

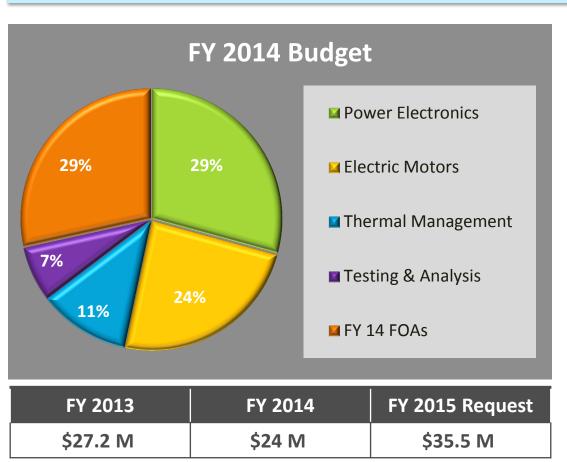


Overview of the DOE Advanced Power Electronics and Electric Motor R&D Program June 17, 2014

Susan Rogers Steven Boyd

Advanced Power Electronics and Electric Motors Vehicle Technologies Office

APEEM R&D Program



Renewable Energy

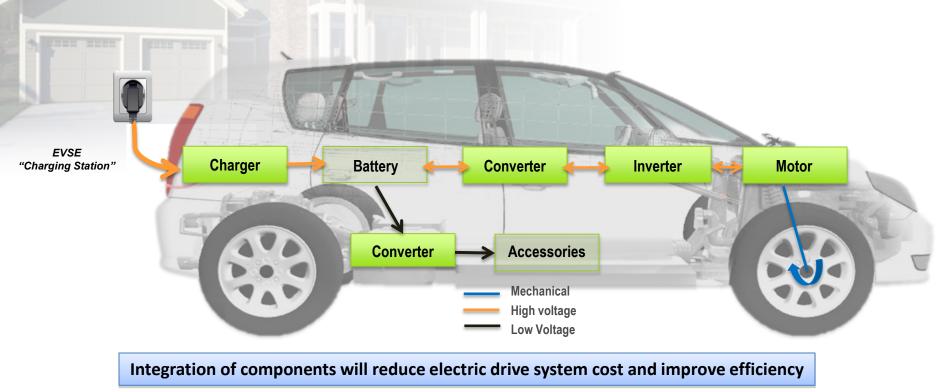
APEEM R&D Mission and Budget

Develop advanced power electronics, electric motors and electric drive systems to enable large market penetration of hybrid and electric vehicles

Meeting program targets will enable market success: increase performance, efficiency and reliability, while lowering cost, weight, and volume

R&D emphasis accelerates:

- Adoption of wide bandgap semiconductors
- Reduction or elimination of rare earth magnets


FY 2014 FOAs:

- Power Electronics \$6M
 - Wide bandgap commercialization
- Incubator \$1.6M
 - "Off-Roadmap" technology R&D

Electric Drive System Components

- Electric motor converts electrical energy to mechanical power for motive power
- Inverter converts high voltage direct current to varying pulses that control and power the electric motor
- Charger modifies and controls electrical energy to re-energize the battery
- Converter(s) increases the battery voltage for the traction drive system and decreases the voltage for the accessories

APEEM Electric Drive System Targets

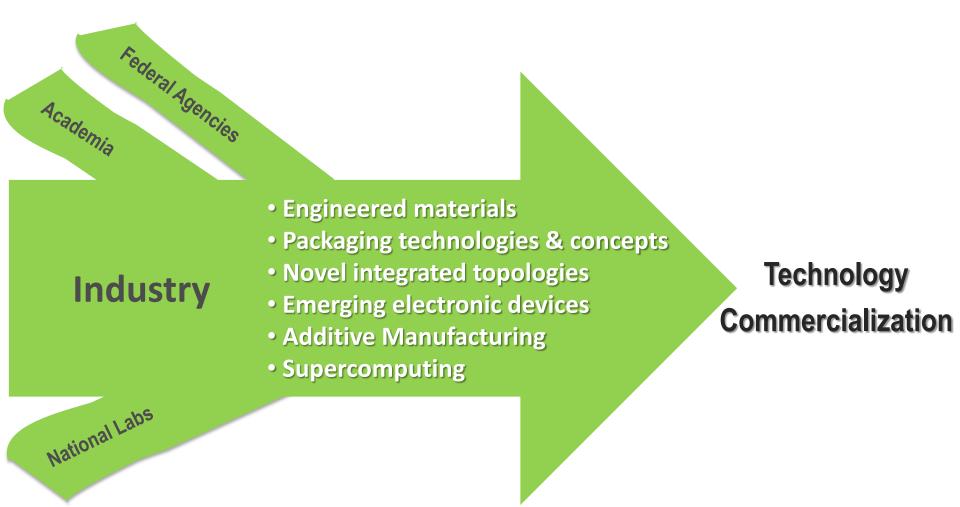
4X Cost Reduction 35% Size Reduction 40% Weight Reduction 40% Loss Reduction

2012 Electric Drive System

\$30/kW, 1.1 kW/kg, 2.6 kW/L 90% system efficiency (on-road status)

- Discrete Components
- Silicon Semiconductors
- Rare Earth Motor Magnets

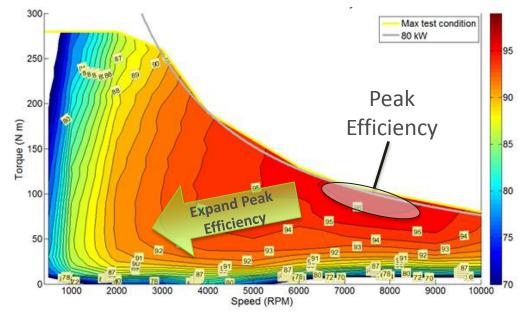
2014 Electric Drive System (R&D target) \$15/kW


2022 Electric Drive System

\$8/kW, 1.4 kW/kg, 4.0 kW/L 94% system efficiency (R&D target)

- Fully Integrated Components
- Wide Bandgap Semiconductors
- Non-rare Earth Motors

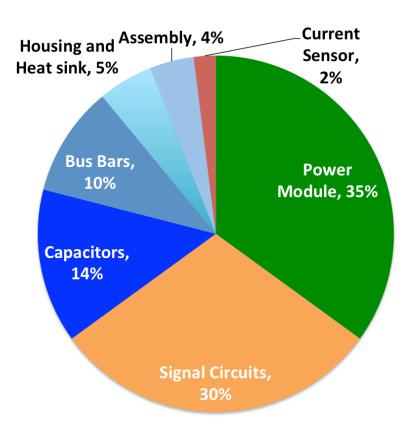
Innovations are Required to Achieve Targets



Volume manufacturing of incremental improvements will not achieve APEEM targets

Electric Drive System Challenges

- Cost reduction is the most significant challenge
 - 4X cost reduction required
- Weight and volume reductions
- Reliability improvements
- Efficiency improvements to increase vehicle range
- Expand regions of high efficiency operation
 - Current peak efficiency regions do not match the most frequent operating points

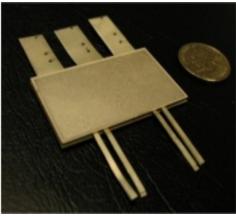


7

Cost Breakdown for an Inverter

Current specific cost: \$13.7/kW 2020 R&D target: \$3.3/kW

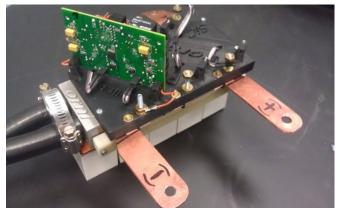
On-road Inverter Cost \$1092


Power Electronics R&D

<u>Challenges</u>

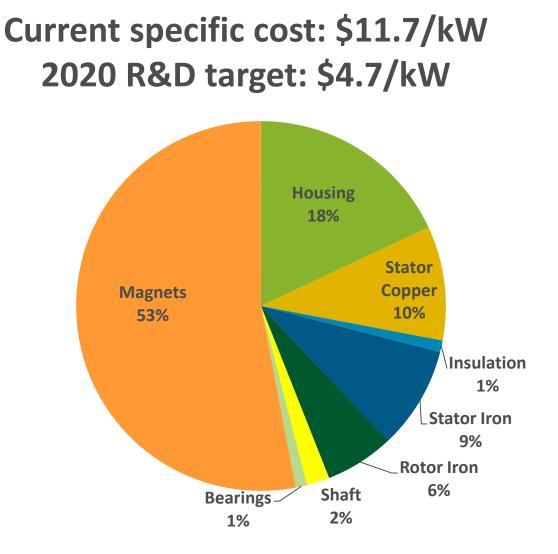
- Cost is the biggest challenge
 - Power module and passive components
 - Integrated, modular, scalable designs
- Volume and weight reductions
 - Driven by passive device size
 - Packaging issues exist at all levels
- Packaging and advanced materials
 - High-temperature operation
 - Increase thermal conductivity
- Reliability
 - Electrical interconnects, interface materials, substrates and epoxies
- Thermal management
 - Improve heat transfer
 - Liquid cooling to air cooling
 - Single-sided to double-sided

• Efficiency


- Utilize WBG devices
- Reduce parasitic losses
- Optimize efficiency at the most frequent operating points

SiC Phase Leg Power Module Prototype 100A/1,200V

Strategies

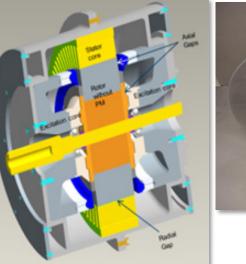

- New Topologies and Designs
 - Decrease cost and size
 - Improve reliability
- WBG Semiconductors
 - Improve performance
- Packaging
 - Reduce cost, size, and weight
- Capacitors
 - Reduce volume and weight
- Vehicle Charging
 - Provide function at minimum cost
- Manufacturability

Additive Manufacturing Prototype Inverter

Cost Breakdown for an IPM Motor

On-road Motor Cost \$938

Electric Motors R&D


Challenges

- Cost is the biggest challenge
 - Rare earth cost and uncertainty
 - Uncertainty of copper prices
- Packaging and advanced materials
 - High-temperature capability
 - Increase thermal conductivity
- Volume and mass reductions
 - Higher operating speeds
 - Low loss laminations
 - Higher slot fill (round vs. rectangular wire)
- Thermal management
 - Temperature limitations of existing materials
 - Improve heat transfer
- Reliability
 - Welds, solders, connectors, insulation
 - Epoxies
- Efficiency
 - Optimize efficiency at the most frequent operating points

ORNL Non-Rare Earth Motor Prototypes

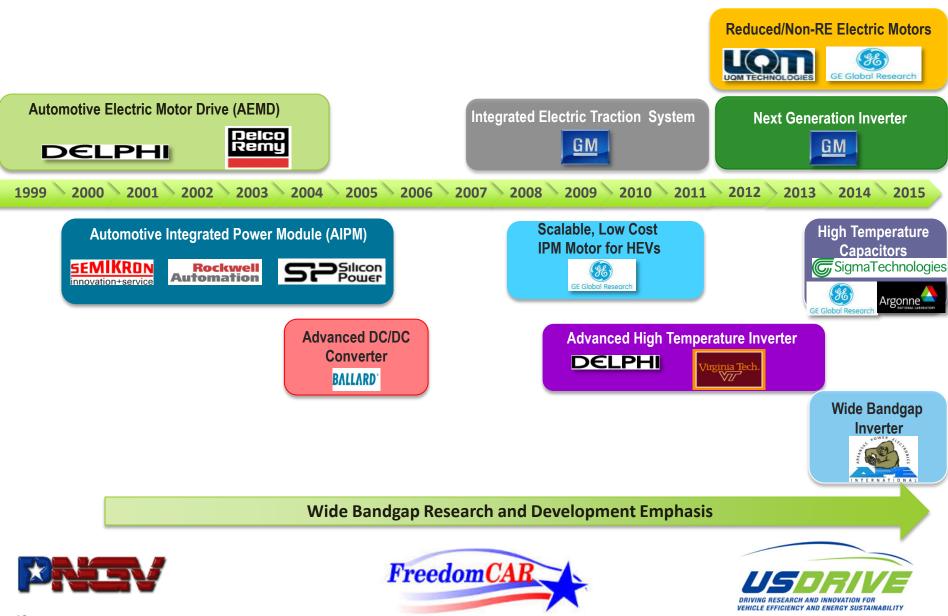
<u>Strategies</u>

- Non-Rare Earth Permanent Magnet (PM) Motors
 - Reduce cost and maintain performance
- Non-PM Motors
 - Reduce cost and improve performance
- Magnetic Materials
 - Reduce cost
 - Improve high-temperature performance
- Innovative Materials
 - Improve performance and reliability
- Manufacturability

Who We Work With

Power G

Argonne


Pacific Northwest

Energy Efficiency & Renewable Energy

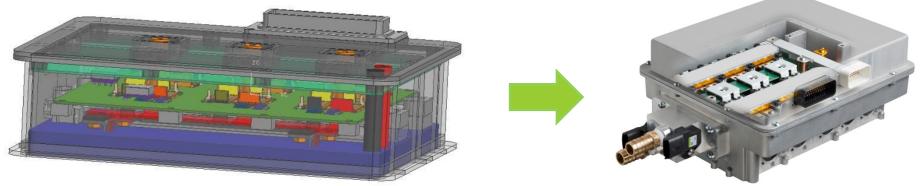
Sandia National Laboratories

Advanced Research Projects Agency • ENERGY

Timeline of Successful Industry R&D

Commercialization of Innovations

- Automotive Electric Motor Drive (AEMD) DELPHI
 - Developed and demonstrated motor manufacturing Innovations
 - Surpassed cost target by 39%
- Automotive Integrated Power Module (AIPM)
 <u>
 SEMIKRON</u>
 innovation+service
 - Established 1st Semikron power electronics manufacturing plant in the US
 - Packaging innovations utilized by US OEM fuel cell vehicle
- Advanced DC/DC Converter BALLARD*
 - Developed innovative packaging topologies which reduced volume and weight
 - Technologies used in US OEM hybrid-<u>electric</u> vehicles
- Integrated Electric Drive System GM
 - Motor winding and control algorithm innovations to optimize power and torque
 - Met 2010 electric drive system cost target
- Advanced High Temperature Inverter DELPHI
 - Packaging, switch, & capacitor advances
 - Technology innovations led to inverter production
- Scalable, Low Cost IPM Motor for HEVs
 - Rare earth magnet manufacturing advances GE Global Research
 - High temperature magnet operation with significant loss reduction

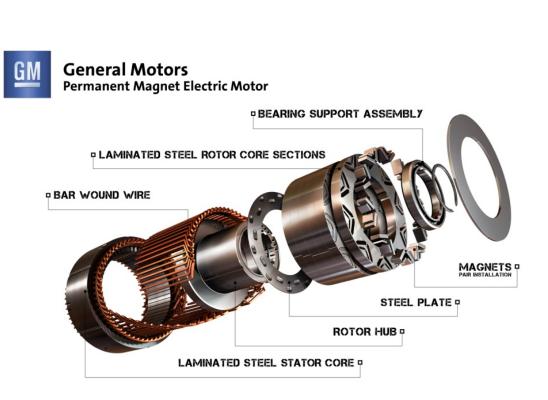


R&D Projects Lead to Commercialization

Delphi R&D of Advanced Inverter with Integrated Controller met APEEM 2015 R&D targets

- Delphi going to production with an inverter based on technology innovations developed with DOE
- National lab expertise and facilities provided project support, including: capacitor development and testing, power device characterization and system modeling, thermal/heat exchanger experiments and interface material characterization, and inverter system testing

Metrics	DOE Specified	Delphi Achievement*
Cost	\$5/kW	\$5/kW
Specific Power	12 kW/kg	17 kW/kg
Power Density	12 kW/L	15 kW/L


* Based on production intent design using PEEM technologies – assuming volume of 100,000 units/year, cost/kW would be lower for upper end of 55-120 kW power range and higher for lower end of power range; kW/kg and kW/L would be higher for upper end of power range and lower for the lower power.

R&D Projects Lead to Commercialization

GM is the first U.S.-based automaker to manufacture electric motors in America

- White Marsh, Maryland facility built as part of cost shared DOE Recovery Act project
- Motors used in Chevrolet Spark EV
- Spark EV electric motor produces 140 hp and 400 lb-ft of torque

Energy Efficiency & Renewable Energy

Current Industry-led R&D Efforts

Power Electronics		Electric Motors		
WBG Inverters for EV Traction Drives*	ΑΡΕΙ	High Performance Permanent Magnets for Advanced Motors (SBIR)	Electron Energy Corporation	
High Performance dc Link Film Capacitors*	GE	Alternative High-		
High Temperature Capacitors for PE*	Sigma Technologies	Performance Motors with Non-Rare Earth Materials	GE	
Small, Lightweight Low Loss Magnetic Materials for Passive Inductors (SBIR)	Aegis Technology	Development of Advanced Soft Magnetic Nanocomposite Materials with Low Loss (SBIR)	Spectrum Magnetics	
Next Generation Inverter * New Awards Since 2013 AMR	GM	Unique Lanthanide-Free Motor Construction	UQM	

National Lab Inventions Accelerate Innovations

Expertise and Unique Capabilities


ORNL	NREL	Ames	ANL
 Power electronics Packaging WBGs 	 Thermal management & reliability 	 Magnetic materials Alnico 	 High temperature capacitors*
• Electric motors		9 21 21 22 100um	
			ALENCE 6000 6 SetU

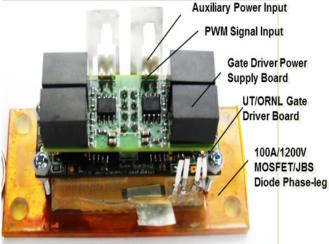
ORNL Integrated Charger/Converter Project Leads to Commercialization

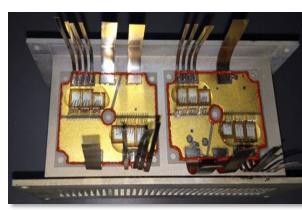
Exclusive license granted to Arcimoto, Inc.

- Eliminates the need for a stand-alone external charger
- Capable of safe, high-temperature operation
- Integrates three innovations developed under APEEM R&D Program:
 - Innovative dc-ac inverter
 - Battery system charger
 - dc-dc converter
- Enhancements include:
 - Efficient bi-directional charging
 - Improved electric motor control
 - Reduced cost and weight

Integrated Charger & dc-dc Converter

dc-ac Inverter


Patent	Inventor	Patent Number	Issue Date
Electrical Motor/Generator Drive Apparatus and Method	G-J Su	8,373,372	February 12, 2013
Electric Vehicle Recharging and/or Supplying Electrical Power	G-J Su	61/709,529	October 4, 2012
Electric Vehicle System for Charging and Supplying Electrical Power	G-J Su	7,733,039	June 8, 2010



Power Electronics FY 2013 Progress

• ANL demonstrated an aerosol deposition process for film-on-foil ceramic capacitor

- Prototypes of integrated ORNL & NREL inventions:
 - Exploited superior attributes of WBG devices
 - Integrated double-sided cooling and optimized heat exchangers
 - Integrated functionality reduced cost, part count, and size
 - Reduced passive component requirements
 - Validated innovative topologies, materials, and packages

ORNL/NREL Single phase power module for air cooled inverter

Folding

Stacked Capacitor

Top Electrode

Flexible Film

Ceramic Film Capacitor Tape

Ceramic Film Dielectrics

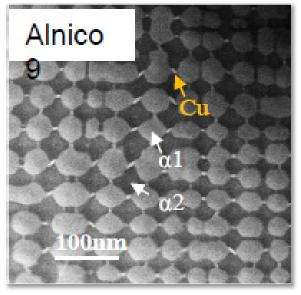
Flexible Film

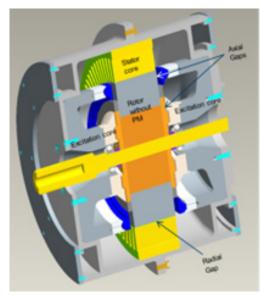
Bottom

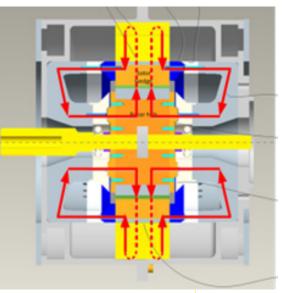
Electrode

Rolling

Wound Capacitor


Top Electrode




Electric Motors FY 2013 Progress

Optimized scalable, non-rare earth electric motor designs:

- Developed unique tools for advanced modeling and implementation on parallel computing systems to optimize new motor technologies
- Developed process for lamination steel with high Silicon content (~6.5%) to reduce iron losses and improve efficiency by up to 40%
 - Designed and implemented new materials characterization system
 - Impacted materials development and advanced modeling
- Validated improved properties of commercial and developmental high silicon steel
- Demonstrated improved alnico magnetic properties

ORNL Non- Rare Earth Motor Prototype

Energy Efficiency & Renewable Energy

Ames Magnet Alloy

21

Recent Patents

Patents Filed:

- K. Bennion and M. Thornton, "Parallel Integrated Thermal Management," Application No. 13/035,082, Notice of Allowance Received May 15, 2014.
- B. Ma, M. Narayanan, U. Balachandran, S. Chao, S. Liu, "Method for Fabrication of Crack-free Ceramic Dielectric Films", US Patent Application 2014/0120736 A1, published on May 1, 2014.
- M. R. Fairchild, R. S. Taylor, C. W. Berlin, C. W. Wong, B. Ma, U. Balachandran, "PLZT Capacitor on Glass Substrate", US Patent Application filed on October 22, 2013.
- M. Chinthavali, "Gas Cooled Traction Drive Inverter," App. No: 14/016,327, DOE-S No. S-124,056, September 3, 2013.
- T. Burress and C. Ayers, "Reluctance Motor," App. No.: 13/944,731, DOE-S No: S-124,185; July 17, 2013.
- M. Narayanan, B. Ma, U. Balachandran, S. E. Dorris, "Method for Producing Thin Film Electrodes", US Patent Application 2013/0071670 A1, published March 31, 2013.

Patents Issued:

- B. Ma, U. Balachandran, S. Chao, S. Liu, and M. Narayanan, "Method for Fabrication of Crack-free Ceramic Dielectric Films", US Patent No. 8,647,737 B2, issued on February 11, 2014.
- K. Bennion and J. Lustbader, "Integrated Three-Dimensional Module Heat Exchanger for Power Electronics Cooling," Patent No. US 8,541,875 B2, September 24, 2013.
- G-J. Su, "Electrical Motor/Generator Drive Apparatus and Method," US Patent No. 8,373, 372; DOE-S No. S-115,264, February 12, 2013.
- Z. Liang et al., "Power Module Packaging with Double Sided Planar Interconnection and Heat Exchangers" Patent No. US 2013/0020694 A1, published January 24, 2013.
- J. Hsu, "Substantially Parallel Flux Uncluttered Rotor Machines," US Patent No. 8,330,319, DOE-S No. S-115,261, December 11, 2012.
- J. Hsu, "Flux Control and One-Hundred and Eighty Degree Core Systems," US Patent No. 8,319,464, DOE-S No. S-115,303, November 27, 2012.

Records of Invention/Disclosures:


- G. Moreno, K. Bennion, and S. Narumanchi, "Two-Phase System for Cooling a Vehicle's Electric Motor and Power Electronics," ROI submitted May, 2014.
- B. Ma, U. Balachandran, S. E. Dorris, T. H. Lee, "Method For Making Wound Or Stacked Ceramic Films Capacitors With Enhanced Breakdown Strength," Record of Invention ANL-IN-14-038, reported on April 3, 2014.
- K. Bennion, J. Lustbader, and R. Farrington, "Multiple Mode Cooling System for Power Electronics," ROI-14-42, February, 2014.
- D. DeVoto and C. King, "Liquid thermal interface material for electronic component cooling and attachment," ROI-14-21, December, 2013.
- A. Wereszczak, D. DeVoto, and P. Paret, "Perimetric Structure for Improved Reliability in Electronic Device Interconnection," Invention Disclosure DOE-S No. S-124,788, October 2013.
- C. Ayers and J. M. Miller, "Hybrid Transflux Motor utilizing Variable Flux Intensifying and Weakening Operation," Invention Disclosure IP-1250, September 10, 2013.
- B. Radhakrishnan and J. M. Miller, "Additively Manufactured Fe-6.5 Si wt. % Si steel Cores for Motor Applications," Invention Disclosure IP1247, September 9, 2013.
- M. Chinthavali, "Novel Power Module Packaging Concept with Ceramics," DOE-S No.: S-124,595, Disclosure No.: 201303015, February 13, 2013.
- G. Moreno, et al., "Two-Phase Heat Exchanger for Power Electronics Cooling," Record of Invention-13-00036, February 2013.
- K. Bennion, J. Cousineau, and J. Lustbader, "Thermal Short-Circuit for Enhanced Power Electronics Cooling," ROI-14-10, November, 2013.
- D. DeVoto, P. Paret, and A. Wereszczak, "Perimetric Structure for Improved Reliability in Electronic Device Interconnection," ROI-14-20, November, 2013.

Information Sources

- FY 2013 Advanced Power Electronics and Electric Motors Annual Progress Report
 - <u>http://energy.gov/eere/vehicles/downloads/vehicle-technologies-office-2013-advanced-power-electronics-and-electric</u>
- Electrical and Electronics Technical Team Roadmap
 - <u>http://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/eett_roadmap_jun</u>
 <u>e2013.pdf</u>
- EV Everywhere Blueprint
 - <u>http://www1.eere.energy.gov/vehiclesandfuels/electric_vehicles/pdfs/eveverywh</u> <u>ere_blueprint.pdf</u>
- Vehicle Technologies Multi-year Program Plan 2011-2015
 - <u>http://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/vt_mypp_2011-2015.pdf</u>

Susan Rogers Susan.Rogers@ee.doe.gov

Steven Boyd Steven.Boyd@ee.doe.gov

http://energy.gov/eere/vehicles/vehicle-technologiesoffice-power-electronics-and-electrical-machines/

