Optimization of Ion Transport in High Energy Composite Cathodes

P.I. and Presenter: Dr. Shirley Meng University of California San Diego June 2014

Project ID ES216

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- April 1st, 2013
- March 31st, 2017
- Percent complete: 25%

Budget

- Total project funding
 - US\$ 899,999
- Funding received in FY13

 US\$ 225,000
- Funding for FY14
 US\$ 225,000

Barriers

- Barriers addressed
 - Low rate
 - Poor voltage stability

Partners

- Interactions/ collaborations
 - Envia Systems
 - Oak Ridge National Lab
- BATT team: Jordi Cabana, Robert Kostecki and Kristin Persson

Objectives

- Probe and control the atomic-level kinetic process that govern the rate and stability in high energy (high voltage) cathode materials
- Establish quantitative diagnosis methods to determine the optimum bulk composition and surface characteristics for high rate and long life

Milestones

- Q1 Establish the initial suite of surface and interface characterization tools, including STEM/EELS, XPS and FP computation (12/31/13 - completed)
- Q2 Identify the surface coated materials (AIF₃ and Li₃PO₄) electrochemical performance matrices, including first cycle irreversible capacity, discharge energy density, voltage stability upon cycling and rate capabilities (3/31/14 - completed)

<u>Go-No Go</u>: Stop and change the coating materials if the improvements for rate capability and voltage stability are not significant (3/31/14)

Milestones

- Q3 Characterize coated samples coating thickness, compositions and morphology before, during and after cycling. (6/30/14 - completed)
- Q4 Identify ways to extend the STEM/EELS, XAS and XPS techniques for anode materials, such as silicon anode. (9/30/14 – *on going*)

Approaches

Combines atomic resolution scanning transmission electron microscopy (a-STEM) & Electron energy loss spectroscopy (EELS), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS) and first principles(FP) computation to elucidate the dynamic changes of the bulk and surface changes

Approaches

Combines atomic resolution scanning transmission electron microscopy (a-STEM) & Electron energy loss spectroscopy (EELS), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS) and first principles(FP) computation to elucidate the dynamic changes of the bulk and surface changes

Dilute O vacancy calculation, a 96 atom unit cell

4 different types of local environment :

✓ 8 of type a: 2Mn1Ni3Li
✓ 10 of type b: 2Mn 4Li
✓ 4 of type c: 1Mn2Ni3Li
✓ 2 of type d: 1Mn1Ni 4Li

Technical Achievements

Technical Achievements

EELS was taken ~0.6nm per step from surface to bulk

Depth Resolved Spectroscopy

Kyler Carroll etc. PCCP, 2013

Soft XAS

Surface O environment definitely changed after 1 cycle

Most significant changes occur at discharge

In Situ Neutron Diffraction

 $R_{F2} = 11.81\%$ $R_{wp} = 1.2\%$ $Chi^2 = 1.702$

 $R_{F2} = 9.27\%$ $R_{wp} = 1.16\%$ Chi² = 1.358

Co-Substitution

Coatings – AIF₃

Morphology Control

Non- Morphology Control

Impact

A Dual Layer Complex Interphase Model

EELS/XAS Mn³⁺ during charge Mn⁴⁺ discharge O²⁻ to O⁻ oxidation

Ni²⁺→Ni⁴⁺ charge Ni⁴⁺→Ni²⁺ discharge EELS/TEY/XPS(Mn3p) Mn^{2/3+} during charge Mn^{~3.5+} discharge

Kyler Carroll etc. PCCP, 2013

Higher Oxidation Mn after Charge

Impact

Much Improved Voltage Stability

Collaborations

Dr. Miaofang Chi (SHaRe – STEM/EELS) Dr. An Ke (SNS – in situ Neutron)

Multilayer in situ Neutron Cell

Future Work

- Characterize coating compositions, thickness and morphology and their effect on impedance/ion transport
- Quantitative refinement of in situ
 Neutron scattering experiment data
- Identify ways to extend the STEM/EELS, XPS and XAS techniques for Si based anode materials

Summary

- Our diagnostic tool suite consisting STEM/EELS, XPS, XAS and FP is effective at identifying the dynamic structural and chemical changes at the interface.
- Probing oxygen activities are possible with insitu soft X-ray absorption spectroscopy and insitu Neutron scattering
- Coating, substitutions and morphology control all have profound effect on the "voltage fade".
 Strategies for enabling high voltage cathodes need to be optimized.

Responses to Previous Year Reviewers' Comments

NEW PROJECT FY 2013