

**Powertrain** 

# Next-Generation Ultra Lean Burn Powertrain DE-EE0005656

Hugh Blaxill, Pl Michael Bunce, Presenter MAHLE Powertrain, LLC 6/20/2014 Project ID: ACE087



Overview Project Outline



#### Timeline **Project Goals/ACE Barriers Addressed** Start Date: February 1, 2012 45% thermal efficiency on a light duty SI engine with emissions comparable to or below existing End Date: January 31, 2015 SI engines (A, B, C, D, F) 30% predicted drive cycle fuel economy Percent Complete: 70% improvement over comparable gasoline engine vehicle (A, C, H) Cost effective system requiring minimal modification to existing hardware (G) **Budget Partners & Subcontractors** Contract Value (80/20): \$ 3,172,779 Gov't Share: \$ 2,499,993 MPT Share: 672.796

Funding received in FY2013: \$494,361

Funding for FY2014: \$ 299,618





Test engine platform



Custom injector design and development

# Background

**MAHLE** Powertrain

- Demand for highly efficient and clean engines
  - Lean operation increases efficiency but typically results in higher NO<sub>x</sub>
  - Ultra lean operation ( $\lambda$ >2) has been shown to increase efficiency and reduce NO<sub>x</sub> due to low cylinder temperatures
- Turbulent Jet Ignition (TJI) offers distributed ignition from fast moving jets of burned/burning products enabling ultra lean operation
  - Low NO<sub>x</sub>
  - Increased knock resistance at high loads
  - Simple integration into production hardware
- Enabling technologies
  - TJI + Boosting



# **Turbulent Jet Ignition Overview**

# **MAHLE** Powertrain

 Auxiliary fueling event enables effective decoupling of pre/main chamber air-fuel ratios

- Thermal efficiency benefit of TJI
  - Ultra-lean operation
  - Reduced throttling losses
- Boosting can enable mapwide lean/ultra-lean operation
  - Multiple operating strategies/platforms possible



# **Objectives/ACE Barriers**

- Objectives:
  - Utilize TJI to achieve stated project goals
    - 45% thermal efficiency
    - 30% vehicle drive-cycle fuel economy improvement over baseline
    - Emissions comparable to baseline; minimal modifications to engine
  - Increase understanding of TJI performance sensitivity to design and operating conditions
  - Barriers Addressed:
    - (A) Fundamental understanding of an advanced combustion technology
    - (B) Emissions reductions may enable reduced cost emissions controls
    - (C) Develop tools for modeling advanced combustion technology
    - (F) Produce emissions data on an advanced combustion engine
    - (G) Prioritize low cost and ease of integration
    - (H) Provide comparable levels of performance to existing SI engines



MAHLE



#### Approach

# Phases 2 and 3 Approaches



**Boosted Single Budget** Cylinder Metal Fuel injection timing/quantity and spark timing sweeps **Engine Testing** Phase 2 TJI design validation, operating Validation of experiments **3-D simulations** parameterization **Boosted Multi-Budget** Mini-map generation provides input to 1-D simulation Cylinder Metal Phase 3 **Engine Testing** Мар generation and drive cycle Predict TJI vehicle drive cycle fuel economy improvement **1-D simulations** simulation

7

# Milestones and Accomplishments Since 2013 AMR

# MAHLE

#### Powertrain

- Completed (Budget) Phase 1
  - Completed testing of single cylinder metal engine, focusing on nozzle design optimization
- Completed (Budget) Phase 2A
  - Single cylinder metal engine with addition of boost rig
    - Testing focused on prechamber design optimization
    - Preliminary operating strategy investigation
  - Initiated CFD model correlation to experimental data

| Milestones                                                                                                | Completion<br>Date |
|-----------------------------------------------------------------------------------------------------------|--------------------|
| BP1                                                                                                       |                    |
| Milestone 1 – Phase 1 Design Work Complete                                                                | 07/25/12           |
| Milestone 2 – Component Procurement Complete                                                              | 10/30/12           |
| BP2                                                                                                       |                    |
| Milestone 3 – Single-cylinder Engine Testing Complete                                                     | 06/04/13           |
| Milestone 4 – Phase 1 Research Completion                                                                 | 08/10/13           |
| Milestone 5 – Boosted Single Cylinder Engine Shakedown Complete                                           | 10/30/13           |
| Milestone 6 – Boosted Single Cylinder Engine Optimization and Vehicle Fuel Economy<br>Prediction Complete | 07/01/14           |
| Milestone 7 – Phase 2 Complete                                                                            | 07/15/14           |
| BP3                                                                                                       |                    |
| Milestone 8 – Boosted Multi-Cylinder Engine Build and Shakedown Complete                                  | 09/12/14           |
| Milestone 9 – Boosted Engine Optimization and Vehicle Fuel Economy Prediction<br>Complete                 | 11/20/14           |
| Milestone 10 – Project Complete                                                                           | 01/31/15           |



Single-cylinder metal engine (Phases 1 and 2)



MPT boost rig (Phase 2)

# Phase 1 Optical Engine Results



- Shorter burn duration correlates to smaller orifice area (confirmed with metal engine)
- Reducing orifice area a major lever to increase velocity
  - Jet velocity correlates to degree of jet penetration prior to ignition
  - Targeted velocity prevents impingement on wall



Design 4 – normalized orifice area = 1.24



Design 5 - normalized orifice area = 2.48

# Phase 1 Analysis of Optical and Metal Engine Data

# MAHLE

#### Powertrain

- Small orifice area → short burn duration → high net thermal efficiency
- Short burn duration is associated with:
  - Enhanced distribution of ignition sites
  - Short flame travel distance
  - **Conclusion:** Jet velocity and ignition site distribution targeting through nozzle geometry to optimize NTE









### Phase 2A Engine Results

- Addition of boost rig and back pressure valve to emulate turbocharger
  - Maintain constant load during lambda sweep
  - Goal: emulate corresponding NA engine speed/load curve regardless of lambda
- Data shows performance differences among prechamber designs
- Area of interest:  $1.7 < \lambda < 2.0$ 
  - Acceptable combustion efficiency and COV
  - NOx < 100ppm</p>





#### Spark plug P1 base TJI P2A large vol TJI 12.5 P2A small vol TJI 12.0 IMEP [bar] 11.5 11.0 10.5 10 8 [%] voc 4000 0 3000 THC [ppmC 2000 1000 6000 0 NOx [ppm - wet] 4500 ~20 ppm 3000 (a) max $\lambda$ 1500 0 1.2 1.6 2.2 1.0 1.4 Lambda

# Phase 2A Engine Results



Powertrain

- Promising p/c and nozzle designs tested further
  - Preliminary operating strategy investigation
- Data suggests TJI can achieve 45% net thermal efficiency
  - Relationship between added p/c fuel, jet strength, and m/c HRR
  - Primary project objective met

Phase 1 IMEPg: 8.7 bar, WOT, airflow-limited

Phase 2 IMEPg: 11.7 bar, WOT



Speed: 2500 rpm

# Numerical Simulation Activities and Progress

MAHLE

- CFD modeling:
  - Correlate CFD simulation to experimental data
  - Model outcome is used for further refinement of the model
  - Model to be used as explanatory tool to help guide design optimization
- Progress made:
  - Strong correlation between model and experiment for multiple auxiliary fueled conditions
  - Non-auxiliary fueled model under development





# **Correlated Fueled Pre-Chamber Simulation**

# **MAHLE** Powertrain

Iso-surface temperature (1500 K)

- Main chamber combustion primarily controlled by:
  - Pre-chamber combustion event
  - Nozzle geometry
- Multiple, distributed ignition sites
- Gas exchange resonance between chambers





# Response to Previous Year Reviewers' Comments



Powertrain

- Multiple comments concerning characterization of AFR in pre-chamber
  - "The project needs further application of research tools to characterize the internal jet prechamber...net air to fuel ratio (AFR)."
  - "...progress related to understanding the AFR...(is) needed."
  - RESPONSE: Delphi CFD and internal CFD provide uncorrelated information about AFR stratification vs. crank angle. MPT will attempt experimental in-pre-chamber measurement to determine AFR in Phase 2B in conjunction with Delphi and Cambustion
    - Procedure developed by Delphi for typical cylinder volumes
    - Pre-chamber volume <2% of main combustion chamber volume</p>
  - Multiple comments expressing concerns over cold start ability
    - "...program should address issues such as: low temperature cold start, which has been problematic for...pre-chamber systems."
    - "...reviewer expressed some concerns with cold start and warm-up operation..."
    - RESPONSE: Cold start development program out of scope of project, however MPT and Ford will study "cold start-ability" testing of multi-cylinder TJI engine
      - Will investigate multiple operating strategies and hardware configurations

#### Collaborations and Coordination

# Collaborations

- Ford Motor Company Project Partner
  - Donated engine hardware, offered operational advice on optical engine, will participate in data sharing
- **Delphi Corporation** Project Subcontractor
  - Supplied pre-chamber fuel injectors and are conducting CFD analysis on fuel injection characteristics
- **Spectral Energies LLC** Project Subcontractor
  - Acquired optical engine data, contributed to post-processing

#### University Collaboration

– Engaged multiple universities concerning further TJI investigation



DELPHI





### **Future Work**

# **Upcoming Project Work and Challenges**

# MAHLE

#### Powertrain

#### Key Challenges

- Challenge: Achieving 30% vehicle drive-cycle fuel economy improvement with TJI
  - Multi-cylinder TJI engine testing is necessary to determine accurate brake specific fuel consumption
- Challenge: Development of TJI operating strategy
  - An appropriate operating strategy is necessary to translate positive thermal efficiency results into real-world fuel economy savings across the operating map
    - Spark timing, auxiliary fuel injection pressure/timing/quantity, valve timing, etc.
  - Provide understanding of the limitations of TJI application across the operating map

#### **Future Work**

- Phase 2B:
  - Complete Phase 2B engine testing
    - Complete design optimization
    - TJI operating strategy development
    - In-pre-chamber RGF and AFR determination
  - Complete CFD model correlation to nonfueled experimental data
- Phase 3:
  - Multi-cylinder engine build and installation
  - Complete multi-cylinder engine testing
    - Mini-map generation
  - Complete 1D vehicle drive-cycle analysis

#### Summary

# Phase 1 and Phase 2A Summary



Powertrain

- Phase 1 design optimization of nozzle successful
  - Better understanding of relationship among jet characteristics, combustion, and NTE
- Phase 2 pre-chamber design optimization and operating strategy development ongoing
  - Correlated CFD as explanatory tool for empirical design optimization
  - Map-wide operating strategy to drive 1D cycle fuel economy results
  - Developed TJI design and preliminary operating strategy capable of achieving 46% net thermal efficiency
    - Exceeds primary project objective

| Project Goal                | Phase Accomplished | Status       |
|-----------------------------|--------------------|--------------|
| Minimal<br>modifications to | Dhase 1            | achieved     |
| engine design               | Pliase 1           | achieveu     |
| 45% peak thermal            |                    |              |
| efficiency                  | Phase 2            | exceeded ✓   |
| Emissions                   |                    |              |
| comparable to               |                    |              |
| baseline                    | Phase 3            | work ongoing |
| 30% vehicle drive-          |                    |              |
| cycle fuel economy          |                    |              |
| improvement over            |                    |              |
| baseline                    | Phase 3            | work ongoing |



MPT would like to acknowledge DOE Office of Vehicle Technologies for funding this work.

18



#### Powertrain



# Thank you for your attention



#### Powertrain



# **Technical Back Up Slides**

# **Turbulent Jet Ignition Overview**



- Pre-chamber combustion concepts are not new
  - Ricardo "comet combustion pre-chamber" 1920s
  - Applied to SI engines as a lean combustion enabling technology
    - Investigated by many OEMs Honda, VW, etc.
  - Currently in production in large-bore CNG gensets
  - TJI is an innovative approach to the pre-chamber concept
    - Auxiliary pre-chamber fueling using prototype low-flow DI injector
      - Enables spray targeting, precise metering
    - Small volume pre-chamber = Small auxiliary fuel requirement
    - Small nozzle orifice diameter promotes flame quenching
      - Jet penetration into main chamber before re-ignition
    - Multiple orifices result in distributed ignition



Wartsila SG



Turbulent jet igniter

# Phase 1 Metal Engine Results



Powertrain

- TJI effectively extends the lean limit of a standard SI engine by maintaining stable combustion
  - Enables ultra-lean ( $\lambda$ >2) operation
- Results demonstrate:
  - Significant thermal efficiency gain over base engine
  - Results comparable to previous TJI experiments
  - Thermal efficiency taper due to changing load



\*Note: 47 kg/hr = 8.7 bar IMEPg @ stoich

# Fueled Pre-Chamber: Gas Exchange



Powertrain

