#### 2014 DOE VEHICLE TECHNOLOGIES ANNUAL MERIT REVIEW

Next Generation Inverter

ProjectID # APE040

#### Presenter: Sean Gleason General Motors June 17, 2014



GENERAL MOTORS

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

### **OVERVIEW**

#### Timeline

- Start October 2011
- Finish January 2016
- 62.9% Complete

#### Budget

- Total project funding
  - DOE \$6.0M
  - GM \$10.6M
- Funding received
  - FY12 \$0.8M
  - FY13 \$1.7M
  - FY14 \$1.2M

#### **Barriers**

- Cost
- Efficiency
- Performance and Lifetime
- Mass and Volume

#### Partners

- Lead General Motors
- Tier 1, 2, & 3 Suppliers -Hitachi, Delphi, Infineon, HRL, Panasonic, AVX, Kemet, and VePoint
- Collaborations National Renewable Energy Laboratory, and Oak Ridge National Laboratory

### RELEVANCE

#### Research Focus Area: High Power Traction Inverters

- → Modularity/Scalability
- → Components power module, gate drive, capacitor, current sensor and control card
- → Supplier development

**Objective** 

- Program, develop the technologies and the engineering product design for a low cost highly efficient next generation power inverter capable of 55kW peak/30kW continuous power.
- Current (3/13 through 3/14), detailed design, build, and initiate test of early units

#### Addresses Targets

- The Inverter is to improve the cost of the power electronics to \$3.30/kW produced in quantities of 100,000 units, and the power density to 13.4kW/l, and a specific power of 14.1kW/kg, with an efficiency >94% (10%-100% speed at 20% rated torque) to meet the DOE 2020 goals

#### Uniqueness and Impacts

- Technology Co-development with the Tier 1, 2, and 3 suppliers
- Detailed knowledge of vehicle application and ability to understand and assess vehicle impacts to make necessary materials and technology trades.

## MILESTONE

| Month<br>/Year | Milestone or Go/No-Go Decision                                                                                                     | Status   |
|----------------|------------------------------------------------------------------------------------------------------------------------------------|----------|
| June<br>2012   | Power Inverters Based on Conventional,<br>Transfer Molded, and Encapsulated Power<br>Module Technology Delivered for<br>Evaluation | Complete |
| Jan<br>2013    | Initial Technology and Production Cost<br>Assessment Complete with Report                                                          | Complete |
| Jan<br>2014    | Concept Design Review – DOE "Go/No-Go" Decision                                                                                    | Complete |
| June<br>2014   | Critical Design Review                                                                                                             |          |
| GENERAL        | MOTORS                                                                                                                             |          |

#### APPROACH

- Engage with Tier 1, 2, and 3 suppliers along with National Labs to co-develop technology that reduces cost and increase efficiency, without increasing volume or mass
- Ensure modularity and scalability of inverter to meet all vehicle applications
  - -Packaging will fit in all vehicle applications
  - -Consistent electrical parameters and mechanical structure
  - -Has to adhere to global manufacturing processes
  - -Has to provide adequate cooling for the capacitor
  - -Has to have low inductance
- Demonstrate technology to verify feasibility and cost

### STRATEGY

- Inverter requirements need to be refined to better describe real vehicle use
  - Inputs necessary for actual results are as follows: vehicle, powertrain, and electric traction system
- Select technologies that are aligned with vehicle application to make common inverters
  - Power module, gate drive, capacitor, and control card
- Cost reduction versus performance trade-offs
- Ensure compatibility with future switches

### **ACCOMPLISHMENTS** – DESIGN SELECTION

Top level rational of selection

- Three types conventional, transfer molded , and encapsulate
- Cost, scalability, modularity

Result, modified conventional

- Benefits
  - Adheres to common manufacturing processes globally
  - Flexibility to meet all vehicle applications while maintaining commonality
  - Simplified unit assembly
- Disadvantages
  - Complexity of design at lower level components
  - Intimate knowledge/understanding of all components and processes to produce required at OEM

#### **ACCOMPLISHMENTS** - ATTACHMENT PROCESS

- Substrate to heatsink and die to substrate attachment
- Solder and sinter pastes, and plating identified
- Temperature profile development







#### **ACCOMPLISHMENTS -** COMPLIANT PIN PROCESS

## • All process parameters identified and specified



#### TYCO 6-Ton Machine MEP-6T

#### **Optional Pin Penetration Sensing Tooling (PPS)**

Option pin penetration sensing (PPS) tooling provides and additional quality check for products applied on a CSP. PPS tools are specifically designed for the product applied to vorib that every pin prop-

to verify that every pin properly penetrates the PCB by a predetermined distance. Coupled with force monitoring, PPS tools give assurance of the proper location, penetration and application of every compliant pin on every product applied. The PPS check is performed in realtime without the need for an additional or destructive quality test.



#### **Run Time Press Monitoring**

The run time screen provides complete operator interface and feedback. Each press cycle is monitored for Force vs Distance and data is clearly displayed. Press stroke status is shown to

acknowledge proper application or error information. A picture of the end product can also be used to guide the operator through the pressing sequence to reduce operator error.



GENERAL MOTORS

### **ACCOMPLISHMENTS** – INVERTER BUILD

Early build completed to test and verify design concept and develop manufacturing process

- Five units built
- Demonstrated integrated inverter design
- Well documented build provided meaningful learnings
- Key suppliers involved during build and provided feedback on part design











### **ACCOMPLISHMENTS** – ELECTRICAL TEST

- Control and Gate Circuitry test complete
- Inductive load
  - Coolant ambient
  - Max current and voltage
- No design issues found



#### **COLLABORATIONS AND COORDINATION**



## **FUTURE WORK**

FY14

- Critical Design Review
- Early Build & Test
- Final Technology and Production Cost Assessment Report

FY15

 Delivery of 3 Next Gen Inverter Units for Confirmatory Testing

### SUMMARY

- Design selection to modified conventional based on criteria of cost, scalability, and modularity
- Process development for proto builds complete
  - Attachment die, substrate, and heatsink
    Compliant nin
  - Compliant pin
- Early unit build complete for electrical tests and learnings are being incorporated into design
- Unit testing has initiated

## **DOE IMPACT ON GM**

General Motors has not made prototype power electronics in a production facility since 1999. Through DoE's funding of the Next Gen Inverter Project, GM has successfully made prototype inverters in a GM electronics production facility. These inverters meet tough cost and power density goals. This work has put GM on the path to seriously considering bringing Power Electronic production back in-house, a possibility that would not exist without DoE funding.

GENERAL MOTORS

# Questions



GENERAL MOTORS