

New High-Energy Electrochemical Couple for Automotive Applications

K. Amine (PI)

H. Wu, A. Abouimrane, Z. Chen, J. Lu, R. Xu, C.K. Lin and Y.C. Kan

Argonne National Laboratory DOE merit review June 15th ~20th , 2014

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project ID: ES208

Overview

Timeline

- Start October 1st, 2013.
- Finish September 30, 2015.
- 15% Completed

Budget

- Total project funding
 DOE share: 2500K
- Funding received in FY13: 1250K
- Funding for FY14: \$1250 K

Barriers

Barriers addressed

- High energy (>200wh/kg)
- Long calendar and cycle life
- Abuse tolerance

Partners

- Project lead: Khalil Amine
- Interactions/ collaborations:
- X. Q. Yang (BNL) diagnostic of FCG cathode and SEI of Si-Sn composite anode
- G. Liu (LBNL) development and optimization of conductive binder for Si-Sn composite anode
- ECPRO: provide baseline cathode material
- Utah University: provide facility to scale up the baseline Si-Sn composite anode for baseline cell
- Andy Jansen & Polzin, Bryant (ANL) fabrication of baseline cell
 - Paul Nelson (ANL) design of cell using BatPac

Objectives of the work

- Develop a new high energy redox couple that provide
 - Over 200wh/kg energy density
 - Long cycle life (> 1000 cycle)
 - Excellent abuse tolerance

Relevance

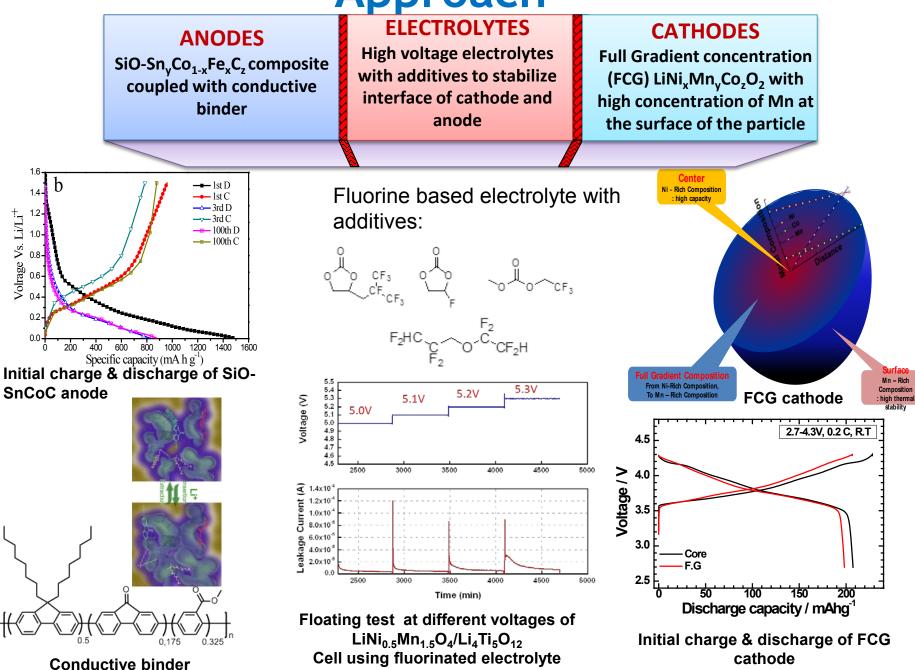
- Objective: develop very high energy redox couple (250wh/kg) based on high capacity full gradient concentration cathode (FCG) (230mAh/g) and Si-Sn composite anode (900mAh/g) with long cycle life and excellent abuse tolerance to enable 40 miles PHEV and EVs
- This technology, If successful, will have a significant impact on:
 - Reducing battery cost and expending vehicle electrification
 - Reduce greenhouse gases
 - Reduce our reliance on foreign oil

Milestones

- May 2014
 - Deliver 12 baseline cells

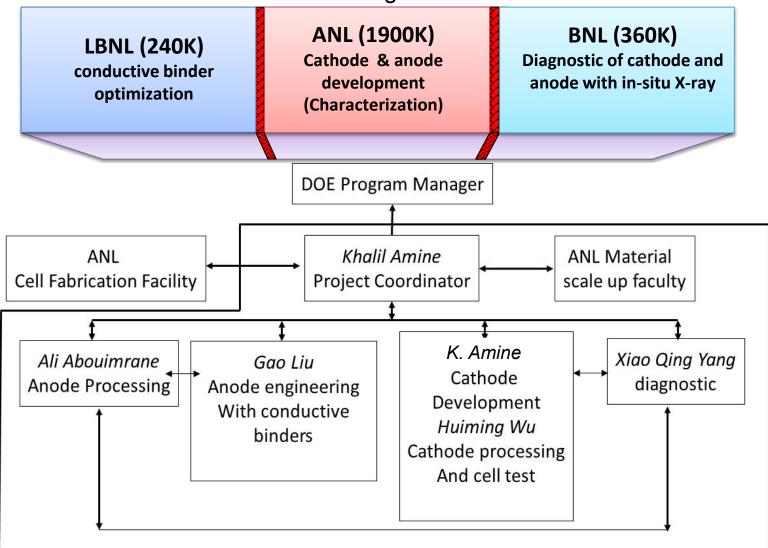
September 2014

• Finalize engineering of electrodes based on 50 wt% SiO-50 wt% Sn₃₀ $Co_{30}C_{40}$ and conductive polymer binder (PFFOMB), fabricate cells and finalize test

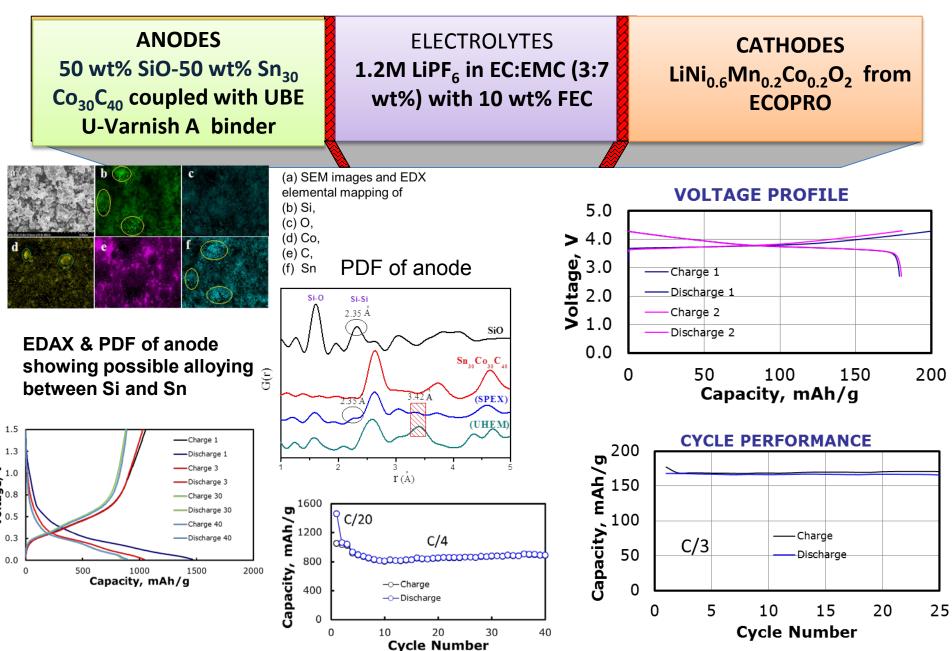

• September 2014

• Finalize the optimization of Gen 1 FCG cathode

October 2014


 Fabricate Gen1 cell based on Gen 1-FCG cathode and 50 wt% SiO-50 wt% Sn₃₀ Co₃₀C₄₀ anode with conductive polymer binder (PFFOMB)

Approach (cont)


Team configuration

Recent Accomplishments and Progress

- Scale up 50 wt% SiO-50 wt% Sn₃₀ Co₃₀C₄₀ anode to 1Kg level for use in baseline cell.
- Acquire 25Kg of LiNi_{0.6}Mn_{0.2}Co_{0.2}O₄ cathode for use in baseline cell
- Engineer cathode & anode electrodes using conventional PVDF binder, build a full baseline cell and carry out cycling test.
- Set up CSTR co-precipitation reactor for carrying out full concentration gradient (FCG) cathode development.
- Successfully prepare dense FCG cathode using hydroxide process (2.7g/cc)
- Confirm thermal stability of FCG cathode using Synchrotron soft X-ray at different temperatures.

Baseline chemistry

Baseline cell Chemistry and design

• Anode:

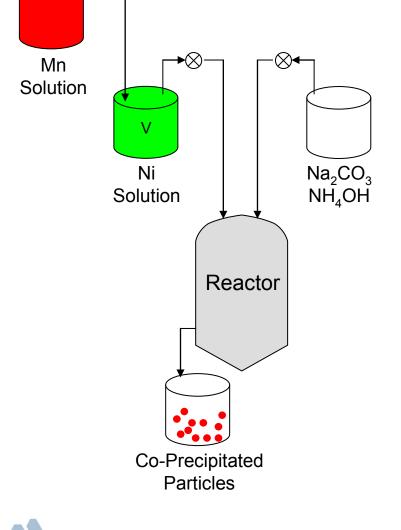
- 90 wt% SiO-SnCo-C; 5 wt% Timcal C-45; 5 wt% UBE U-Varnish A
 - Total Electrode Thickness: 13 microns
 - Cu Foil Thickness: 10 microns
 - Total Electrode Loading: 2.41 mg/cm³
 - Porosity: ~45%

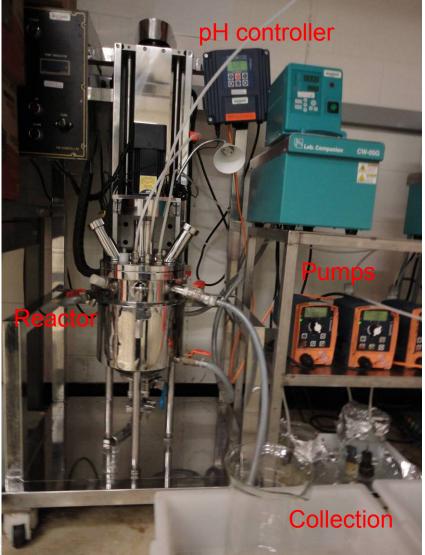
• Cathode:

- 90 wt% ECOPRO NCM 622; 5 wt% Timcal C-45; 5 wt% Solvay 5130 PVDF
 - Total Electrode Thickness: 77 microns
 - Al Foil Thickness: 20 microns
 - Total Electrode Loading: 14.83 mg/cm³
 - Porosity: ~36%
- Separator:
 - Celgard[®] 2325 PP/PE/PP Tri-Layer

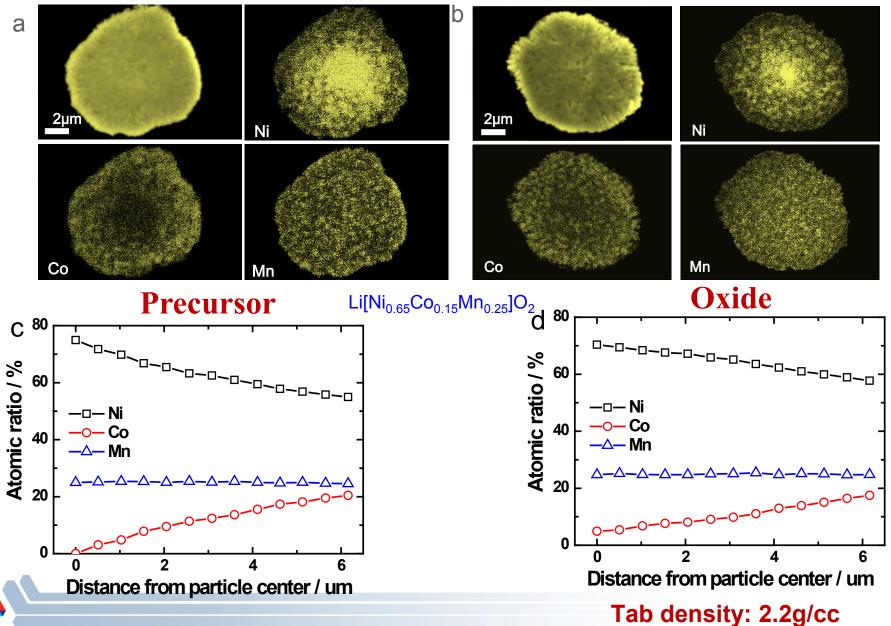
• Electrolyte:

- Tomiyama Pure Chemicals -1.2M LiPF₆ in EC:EMC (3:7 wt%) with 10 wt% Solvay FEC
- Coin Cell work done in 2032 sized cells

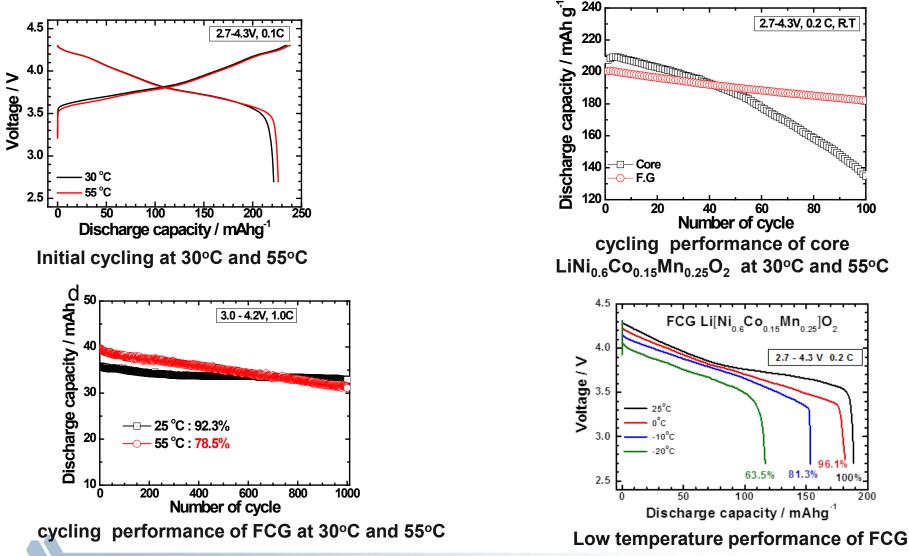

Initial result of baseline cell using button cells

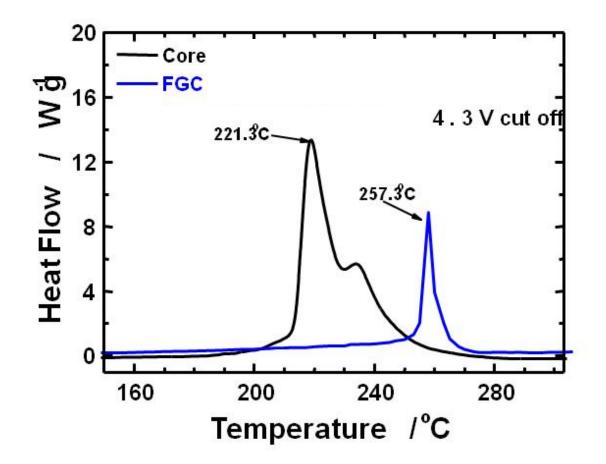


Usable Energy and power of baseline cell based on BatPac Design

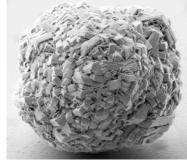

		Battery Performance (Cell Level)			
Deliverable	Device	Usable Specific Energy (Wh/kg)	Energy Usable Density (Wh/l)	Power at SOCmin (W/kg,10 sec)	Technology Info
baseline	20Ah Cell 40Ah Cell BatPac Design	(~216) (~271)	(~511) (~650)	(~1880) (~1177)	Si-Sn Composite And NMC (6:2:2)

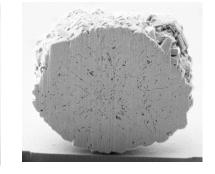
Synthesis of Full Gradient Concentration (FCG) Precursor via CSTR Co-precipitation Reactor Setup

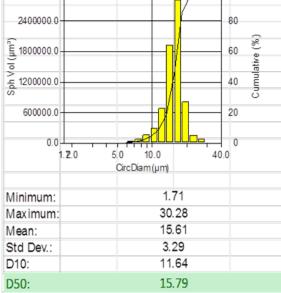



Cross section EPMA of precursor and (FCG) from Carbonate Process

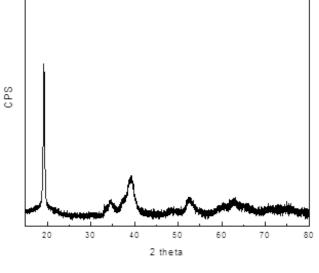
Electrochemical performance of FCG cathode


DSC of Charged FCG and LiNi_{0.6}Co_{0.15}Mn_{0.25}O₂ (Core) Having the Same Composition

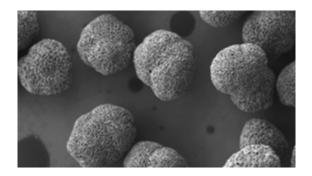


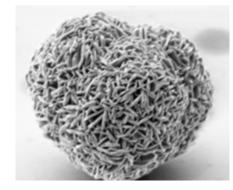

FCG average composition: LiNi_{0.6}Co_{0.15}Mn_{0.25}O₂

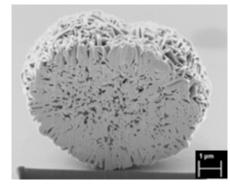
Characteristics of FCG Precursor Made From Hydroxide Process

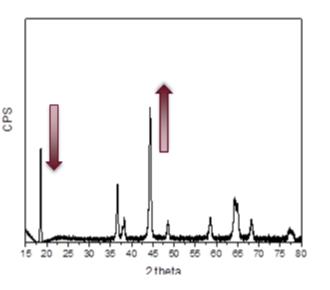


Particle distribution of Ni_{0.6}Co_{0.2}Mn_{0.2}(OH)₂

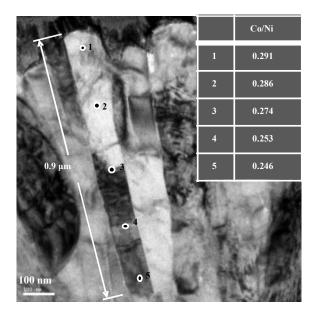

SEM of Ni_{0.6}Co_{0.2}Mn_{0.2}(OH)₂



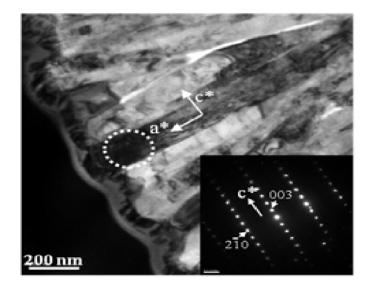

X-ray of $Ni_{0.6}Co_{0.2}Mn_{0.2}(OH)_2$


- 1. High Tap density=2.2 g/cc
- 3. Good particle distribution: D50=11.64 um
- 4. Average composition is : $Ni_{0.6}Co_{0.2}Mn_{0.2}(OH)_2$ outer is about: $Ni_{0.46}Co_{0.23}Mn_{0.41}(OH)_2$ inner is about : $Ni_{0.8}Co_{0.1}Mn_{0.1}(OH)_2$

Characteristics of FCG Gradient Cathode Made From Hydroxide Process

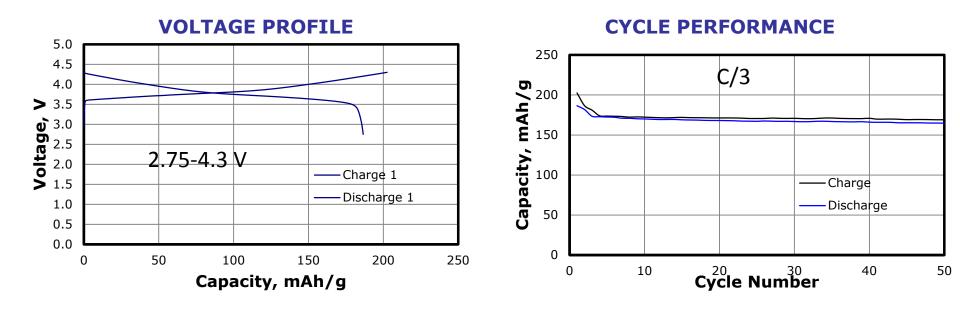


SEM of LiNi_{0.6}Co_{0.2}Mn_{0.2}O₂

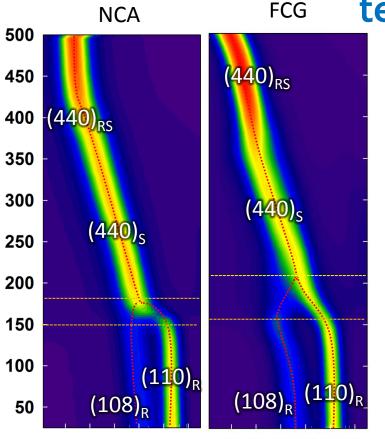

- 1. High Tap density=2.7g/cc
- 3. particle distribution: D50=11.64 um (unchanged)
- 4. Average composition is : LiNi_{0.6}Co_{0.2}Mn_{0.2}O₂ outer is about: LiNi_{0.46}Co_{0.23}Mn_{0.41}O₂ inner is about : LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂

X-ray of LiNi_{0.6}Co_{0.2}Mn_{0.2}O₂

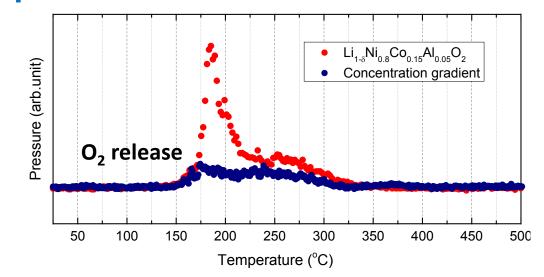
TEM of Full Gradient Concentration Cathode made from Hydroxide Process


TEM image along with energydispersive X-ray spectroscopy (EDS) data for a single elongated CCG primary particle

TEM image and the corresponding electron diffraction pattern from a CCG primary particle, illustrating the crystallographic alignment of the primary particle in the radial direction.



Initial Electrochemical Performance of FCG Gradient Cathode from Hydroxide Process


Initial cycle: Charge: 202.5 / Discharge: 186.6 mAh/g with 92.1% efficiency at C/5 Cycle life: it is very stable at C/3 with 50 cycles at room temperature

Thermal stability of NCA and FCG charged to 4.5V using synchrotron soft X-ray at different

62 63 64 65 66 67 62 63 64 65 66 67 Synchrotron soft X-ray at different temperature.

temperatures

The FCG sample shows less oxygen release than bulk NCA samples.

The fist cycle capacity of NCA and FCG at 4.5V is around 230mAh/g. The FCG sample showed much better thermal stability

Responses to Previous Year Reviewers' Comments

This project is new and was not reviewed last year

Collaborations

- X.Q. Yang of BNL
 - Diagnostic of FCG and SEI of Si-Sn composite electrodes using soft & hard X-ray.
- G. Liu (LBNL)

•Development and optimization of conductive binder for Si-Sn composite anode

- •H. Wu (ANL) •Optimize the synthesis of FCG cathode
- A. Abouimrane (ANL)
 Development of SiO-Sn_vCo_{1-x}Fe_xC_z anode
- •J.Lu & Z. Chen (ANL)
 - •Characterization of cathode, anode and cell during cycling using In-situ techniques
- ECPRO : Baseline cathode material
- •University of Utah : Facility to scale up the baseline Si-Sn composite anode for baseline cell
- A. Jansen & B. Polzin (ANL)
 - •Design & fabrication of baseline cell
- Y.K. Sun (ANL/Hanyang University): Technical discussions

Remaining Challenges and Barriers

- Reduce irreversible loss of SiO-Sn_yCo_{1-x}Fe_xC
- Demonstrate 1000 cycles of SiO-Sn_yCo_{1-x}Fe_xC_z using conductive binder
- Improve further FCG cathode capacity to 220~230mAh/g at high voltage 4.4V and 4.5V
- Demonstrate 250wh/kg at the cell level using improved FCG cathode and SiO-Sn_vCo_{1-x}Fe_xC_z anode.

Future work

- Optimize the ratio of SiO-Sn_yCo_{1-x}Fe_xC and graphite to reduce irreversible loss
- Optimize SiO-Sn_yCo_{1-x}Fe_xC electrode with conductive binder to improve cycle life
- Investigate the stability of SEI in SiO-Sn_yCo_{1-x}Fe_xC and explore additive that provide stable passivation film.
- Synthesize FCG gradient materials with different surface Mn concentration as well as different gradient concentration slopes to determine the detailed effects of the composition profile on cathode capacity and stability.
- Explore further coating FCG cathode with AIF₃ to improve cycle life at 4.4 and 4.5V.
- Investigate performance of FCG with high voltage fluorinated electrolyte

Summary

- Baseline cell based on NMC (6:2:2) / 50 wt% SiO-50 wt% Sn₃₀ $Co_{30}C_{40}$ carbon was fabricated and tested
- Set up of CSTR Co-precipitation reactor for making FCG cathode was successfully implemented
- Synthesis of FCG using hydroxide process was successfully carried out and spherical particles with very high tap density of 2.7g/cc was obtained which can lead to high loading at the electrode level and increase the energy density of the cell
- High thermal stability of FCG cathode was demonstrated using synchrotron soft X-ray at different temperatures .

Publications and Presentations

1- Cathode Material with Nanorod Structure "An Application for Advanced High-Energy and Safe Lithium Batteries" Hyung-Joo Noh, Zonghai Chen, Chong S. Yoon, Jun Lu, and Khalil Amine,* Chem. Mater. 2013, 25, 2109–2115

2- Formation of a Continuous Solid-Solution Particle and its Application to Rechargeable Lithium Batteries
Hyung-Joo Noh , Seung-Taek Myung , Hun-Gi Jung , Hitoshi Yashiro , Khalil Amine ,* and Yang-Kook Sun
Adv. Funct. Mater. 2013, 23, 1028–1036