Joint Development and Coordination of Emissions Control Data and Models (CLEERS Analysis and Coordination)

Stuart Daw, Josh Pihl, Jae-Soon Choi, Mi-Young Kim, Bill Partridge, Todd Toops, Vitaly Prikhodko, Charles Finney

PI: Stuart Daw Presenter: Josh Pihl Oak Ridge National Laboratory

Vehicle Technologies Office Annual Merit Review June 18, 2014 Washington, DC

DOE Managers: Ken Howden, Gurpreet Singh, Leo Breton

This presentation does not contain any proprietary, confidential, or otherwise restricted information

project ID: ACE022

DAK RIDGE NATIONAL LABORATORY

Overview

Timeline

Project start date: FY2000

Project end date: Ongoing

- core activity supporting & coordinating emissions control research
- evolves with DOE priorities and industry needs

Budget

	FY13	FY14
Coordination	\$300k	\$250k
Kinetics	\$400k	\$400k

Barriers

MYPP Challenges and Barriers:

- 2.3.1.B Lack of cost-effective emission control
- 2.3.1.C Lack of modeling capability for...emission control
- 2.3.1.E Durability (of emissions control devices)

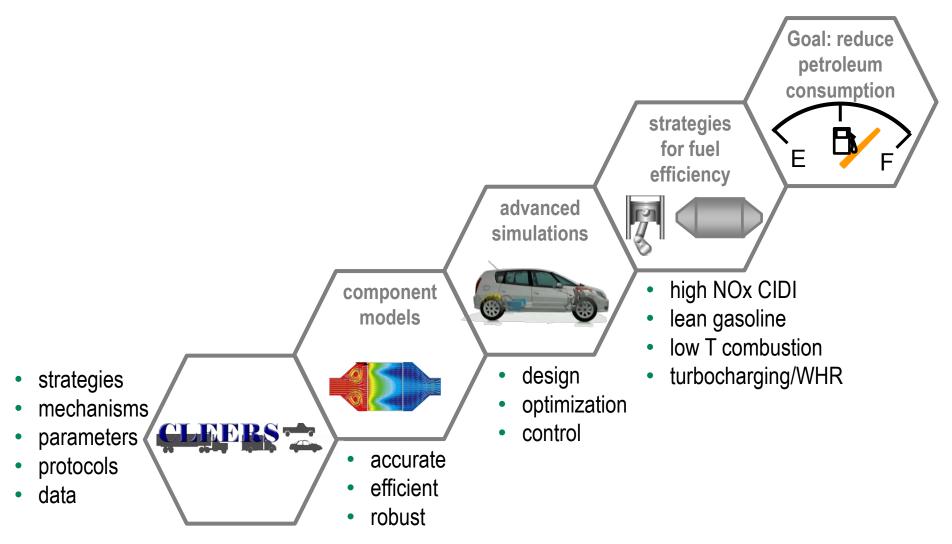
MYPP 2015 Technical Targets:

- EPA Tier 3 Emissions (original goal: Tier 2 Bin 2)
- <1% efficiency penalty due to emission control

Partners

- DOE Advanced Engine Crosscut Team
- U.S.DRIVE ACEC Team
- CLEERS Focus Group members
 - 10 engine/vehicle manufacturers
 - 12 component and software suppliers
 - 11 universities
- PNNL, ICT Prague, Politecnico di Milano

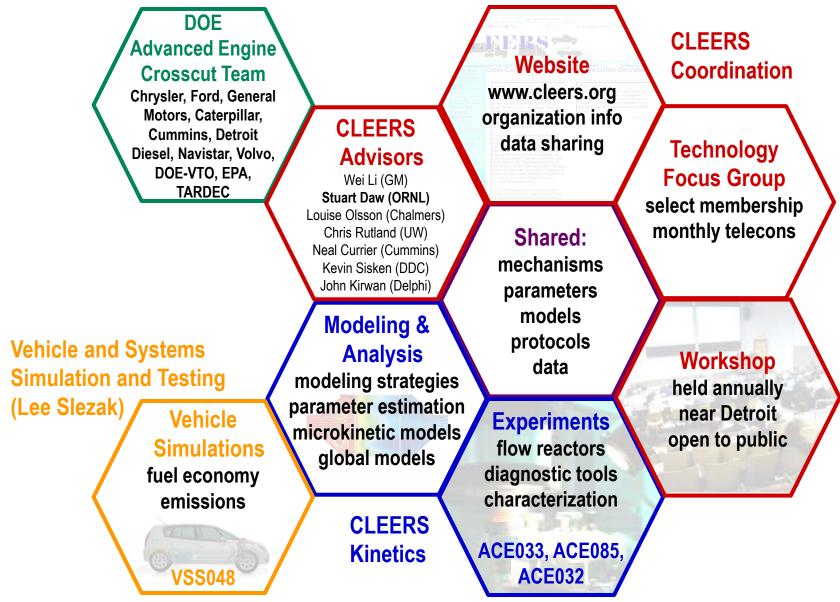
CLEERS enables the VTO goals of improving efficiency while meeting emissions regulations


"The [VTO ACE] R&D approach is to simultaneously improve engine efficiency and meet future federal and state emissions regulations through a combination of combustion and fuels technologies that increase efficiency and minimize incylinder formation of emissions, and cost effective aftertreatment technologies to further reduce exhaust emissions with minimal energy penalty." - Vehicle Technologies Office Multi-Year Program Plan 2011-2015

- CLEERS supports collaborations among industry, university, and national lab partners to develop and disseminate critical pre-proprietary data and improved computational tools for accurately simulating the performance and impact of emissions controls technologies for advanced engines.
- CLEERS provides a mechanism for gathering feedback from industry on critical emissions control research needs and for coordination of DOE National Laboratory research efforts.

"Without aftertreatment constraints in the simulation, the model might allow engine system operation outside the emission-constrained envelope." - NAS study on reducing fuel consumption from MD and HD vehicles (ISBN: 0-309-14983-5)

CLEERS provides a key stepping stone on the path to reduced petroleum consumption



relevance approach accomplishments collaborations future work

Milestones

FY	Qtr	Milestone	Status
2013	4	Expand CLEERS database	complete
2013	4	Measure NOx reduction kinetics and NH ₃ storage on a commercial zeolite SCR catalyst under conditions relevant to low temperature exhaust applications	complete
2014	1	Issue final report on the 2013 CLEERS Industry Survey to the DOE Advanced Engine Crosscut Team.	complete
2014	2	Measure NH ₃ storage isotherms on a commercial small pore copper zeolite catalyst.	complete
2014	3	Conduct 2014 CLEERS Workshop.	complete
2014	4	Propose a revised mechanism that predicts N ₂ O formation during regeneration of lean NOx traps.	on schedule

Overall Approach for CLEERS Activities

relevance **)**approach **)**accomplishments **)** collaboratio<u>ns)future work</u>)

Technical Accomplishments (1)

- CLEERS Coordination
 - Organized 17th CLEERS Workshop
 - Coordinated monthly Focus Group teleconferences
 - Provided basic data in support of vehicle systems aftertreatment modeling
 - Established new online database for references relevant to modeling of emissions control devices
 - Analyzed and reported results from 2013 industry priority survey
 - Worked with PNNL to support development of protocols for low temperature catalyst performance evaluation by the ACEC Tech Team Low Temperature Aftertreatment working group

Technical Accomplishments (2)

- CLEERS Kinetics: SCR
 - Measured NH₃ storage isotherms on a commercial small pore Cu zeolite
 - Developed and applied analysis techniques for extracting adsorption enthalpies from isotherm data
 - Collaborated with Politecnico di Milano to develop reaction mechanisms for NO oxidation and NO SCR consistent with reaction rate measurements and DRIFTS observations
 - Working with PNNL to update and evaluate CLEERS SCR protocol
- CLEERS Kinetics: LNT
 - Worked with ICT Prague to identify and model mechanisms for N₂O formation

CLEERS Coordination: Approach & Accomplishments

relevance >approach >accomplishments > collaborations > future work

CLEERS is an efficient means for communicating pre-competitive information

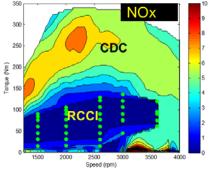
New web postings:

- Steady-state and transient LD engine-out measurements for RCCI
- Preliminary DOC measurements for RCCI exhaust
- Lab LNT catalyst kinetics measurements
- Reference library in Zotero and .ris format on CLEERS website

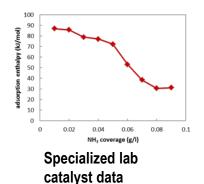
Monthly teleconferences:

Technical presentations of latest results to 20-40 participants

Industry priority surveys and scoping


- 2013 CLEERS Industry Priorities Survey Final Report to the Crosscut Team
- Assistance to U.S.DRIVE ACEC Tech Team Low -T Aftertreatment working group

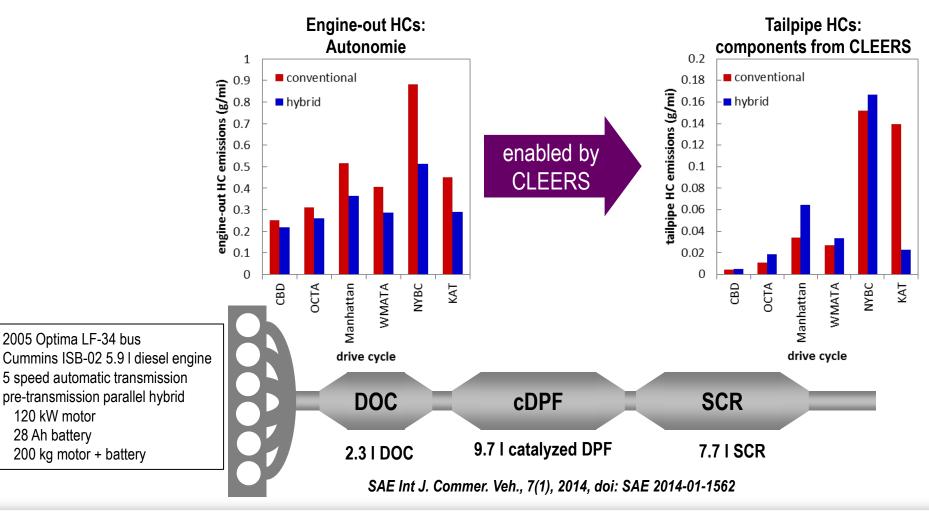
• Workshop #17, April 29-May 1, 2014, UM Dearborn


- 100 attendees: OEMs, component & software suppliers, national labs, universities
- 39 oral presentations, 12 posters, multiple small group discussions
- Industry panel on "Expected impacts of advanced combustion regimes and alternate fuels on emissions controls"

Collaborations for SCR & LNT catalyst experiments & modeling

 Supported collaborations with ICT Prague, Politecnico di Milano, and University of Wisconsin to develop improved kinetic mechanisms

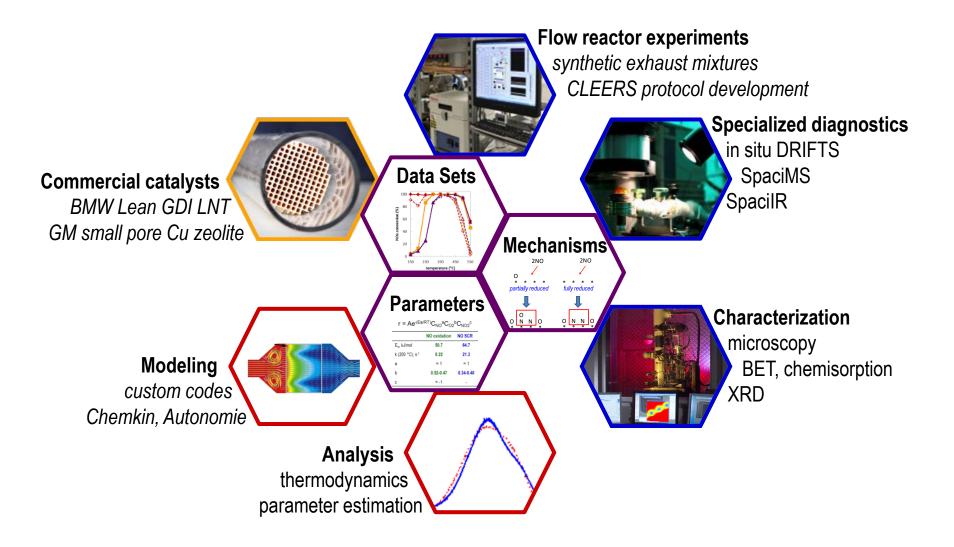
Advanced engine and aftertreatment measurements



2013 CLEERS Workshop

CLEERS is enabling device models for comparing simulated emissions among powertrain options

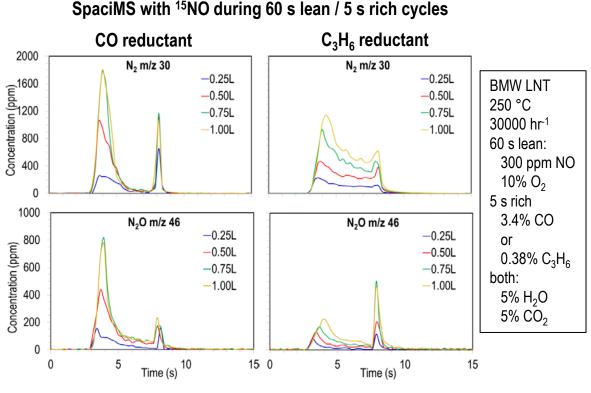
• Example: Simulations of MD conventional and electric hybrid buses over 6 different drive cycles using CLEERS data and models to relate engine-out and tailpipe emissions


future wor

relevance 🔾

CLEERS Kinetics: Approach & Accomplishments

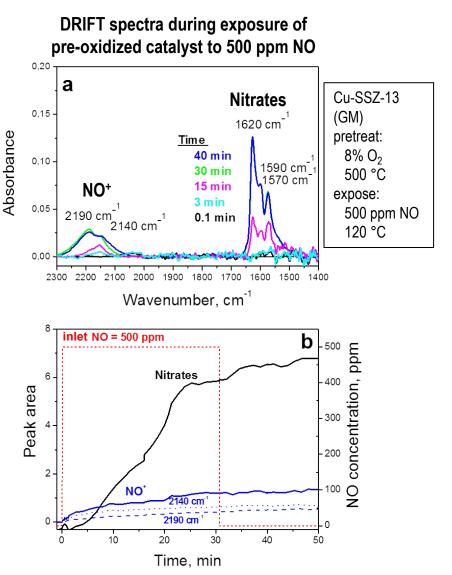
relevance approach accomplishments collaborations future work


ORNL conducts experiments and analysis aimed at improving models for NOx control catalysts

Spatially & temporally resolving LNT regeneration chemistry clarifies N₂O formation mechanisms

collaboration with ICT Prague

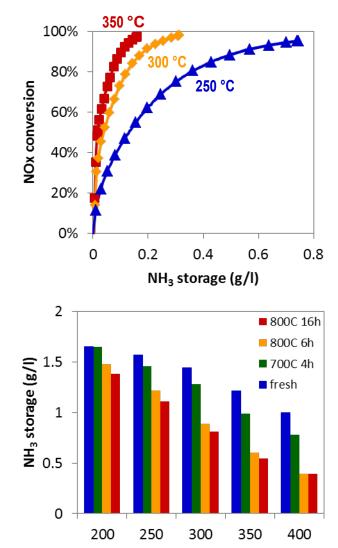
- Priority survey: LNT mechanisms ranked medium or high priority by majority of LD diesel respondents
- Hosted David Mráček (student) and Dr. Petr Kočí from ICT Prague
- (FY 13) Primary N₂O peak at regen. start from reduction of stored NO_x over poorly reduced PGM sites at regen. front
- Secondary N₂O peak at rich to lean switch from reaction between residual NO_x and reductants on LNT surface (NH₃, CO, HC)



- N₂O minimized by more complete regeneration: more effective reductant (H₂ > CO > C₃H₆), higher temperature, longer regeneration duration
- Models that accurately predict N₂O formation will enable development of control strategies that minimize production of N₂O, a potent greenhouse gas included in emissions regulations

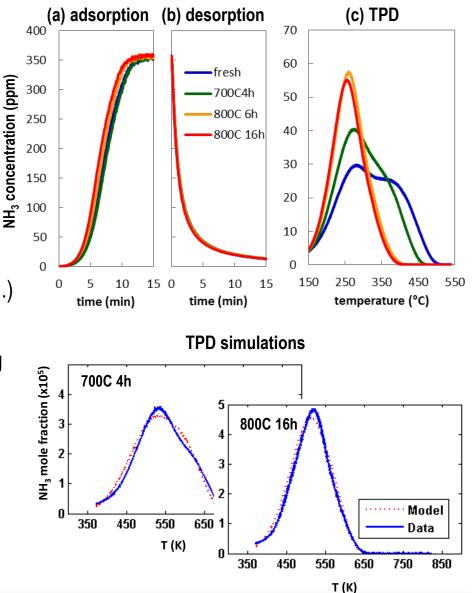
Developing experimentally consistent NO SCR reaction mechanism to improve low T accuracy

collaboration with Politecnico di Milano


- Priority survey: NH₃ SCR mechanisms ranked medium or high priority by majority of respondents
- Hosted PoliMi graduate student Maria Pia Ruggeri
- (FY13) Concluded NO oxidation to NO₂ is not a key step in NO SCR based on reaction rates
- Conducted DRIFTS investigations, revealing:
 - Cu site redox activity: NO oxidized by Cu²⁺ in absence of O₂
 - potential NO⁺ intermediate
- Proposed new mechanism for NO oxidation
 - submitted journal manuscript
- Working on related NO SCR mechanism
- More accurate mechanisms will improve SCR model predictions, particularly at low T

Accurate models of NH₃ storage needed to develop high NOx conversion SCR systems

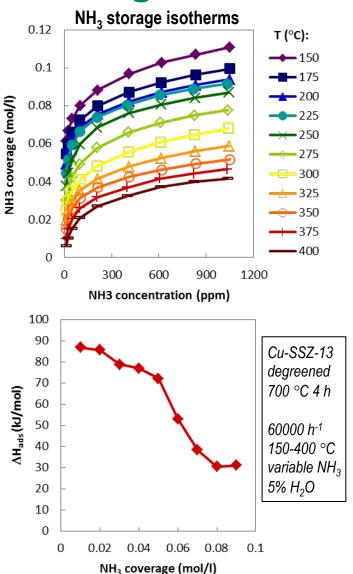
collaboration with PNNL (ACE023)


- Priority survey: NH₃ storage, oxidation, and release ranked as a high priority topic
 - #1 of 7 urea SCR topics
 - #1 of 12 NOx emission control topics
 - #3 of all 32 survey topics
- NH₃ inventory must be managed to maximize NOx conversion, minimize NH₃ slip, and efficiently utilize urea
 - high NH₃ coverages required for high NOx conversion
 - especially critical for non-urea approaches based on NH₃ production/consumption cycles (passive SCR, LNT-SCR)
 - dosing strategies often built with simulation tools
- NH₃ storage capacity varies significantly with temperature, gas composition, and catalyst age
 - models must capture these dependencies
 - high T capacity drops by half over vehicle life

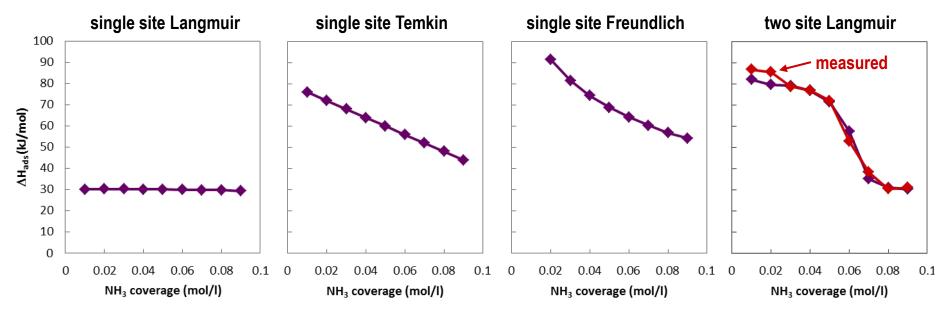
temperature (°C)

Current strategies for measuring and modeling NH₃ are insufficient

- Commonly used experimental protocols rely on transient operating conditions that confound:
 - transport (diffusion limitations)
 - kinetics (reaction rates)
 - thermodynamics (energies, capacities)
- No agreement on model strategies in literature
 - number of NH₃ storage sites
 - energetics of adsorption (Temkin, Langmuir,...)
- Complicated data sets and uncertain model structures make parameter estimation challenging
 - easy to generate "reasonable" fits to data
 - resulting parameters neither unique nor globally valid
- We are working with PNNL to develop better measurement and modeling strategies



New approach: use steady state isotherms and thermodynamic analysis to isolate energetics


- Measure equilibrated NH₃ storage under steady state operating conditions
 - eliminates transport and kinetic effects
 - time consuming (requires automated reactor)
- Extract adsorption enthalpies with thermodynamic relation (Clausius-Clapeyron equation):

$$\frac{d\left(\ln P_{NH_3}\right)}{d\left(\frac{1}{T}\right)} = \frac{\Delta H_{ads}}{R}$$

- Use ∆H_{ads} vs. NH₃ coverage plots to characterize storage sites and identify modeling strategies:
 - number and relative abundance of sites
 - energetics of adsorption at each site
- Note: ∆H_{ads} vs. NH₃ coverage curve could be used directly in a map-based modeling strategy

NH₃ adsorption enthalpy trends elucidate catalyst properties and appropriate modeling strategies

- Comparison of calculated ∆H_{ads} vs. NH₃ coverage with model isotherms reveals key catalyst properties and informs selection of appropriate model structure:
 - roughly equal populations of two distinct NH₃ storage sites that follow Langmuir isotherm behavior with (constant) adsorption enthalpies of -30 and -85 kJ/mol
- Currently studying impacts of H₂O inhibition and hydrothermal aging on NH₃ adsorption energetics
- Findings have been shared with PNNL for incorporation in their global SCR model
- We will apply a similar approach to hydrocarbon traps for low T combustion in late FY14

Responses to Reviewer Comments

 "External publication seemed to be light compared to the amount of work they had done, although there were many oral presentations.

This is a side effect of the cyclical nature of research; we already have one manuscript published, one submitted, and one in preparation for FY14.

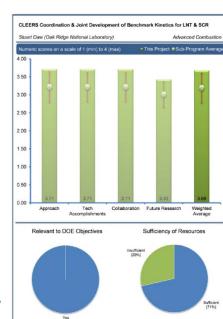
"...most OEMs already had models for commercial catalyst system..."

Industry partners tell us they need better models, parameters, and data sets to design next generation systems and control strategies; DOE does not have access to OEM device models, but needs accurate system simulations for scoping and goal setting

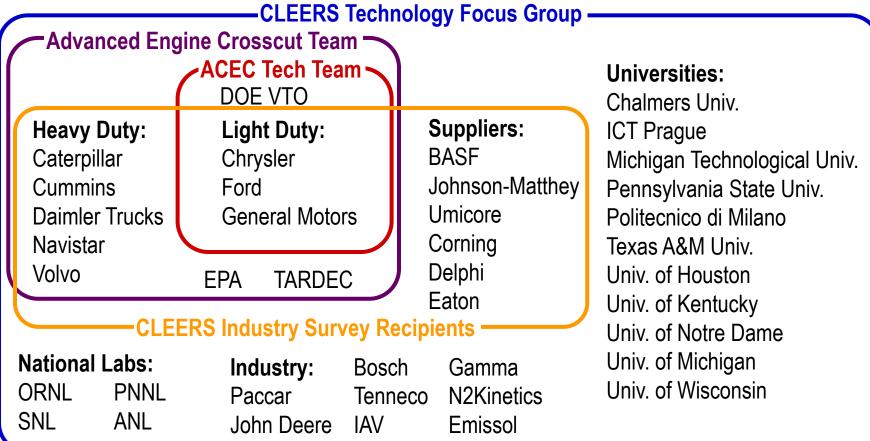
 Mention "some of the other partners' contributions... " and "involvement of the DOE Advanced Engine Crosscut Team, the U.S. DRIVE ACEC Team, and the CLEERS Focus Group members."; "...show a brief rationale connected to the industry partners and other users when setting priorities..."

We have tried to more explicitly address the roles of research collaborators and CLEERS participants, and to motivate each activity based on survey feedback in this presentation.

"add a CLEERS use/feedback survey, ...to gauge industry/researcher interest and value, and to provide feedback."


The CLEERS Industry Priorities Survey includes questions on the importance of various CLEERS activities.

"...like to see the PM work integrated into the ORNL program."


There aren't enough resources in this project to investigate PM without eliminating other topics, particularly since generating PM samples requires engine experiments; there are projects at ORNL and other labs focused directly on PM that utilize tools and techniques developed under CLEERS

 "...one concern would be the mechanism between ORNL and international partners; collaboration often requires balanced contributions and face-to-face interaction to facilitate scientific discussions.... With the given travel restrictions, it would be more difficult."

We appreciate your concerns regarding travel restrictions. We host foreign graduate students in our labs, and our partners graciously come to visit us or meet with us at conferences held in the U.S.

Collaborations

- Technology Transfer:
 - CLEERS website postings: lab protocols; flow reactor, engine, and vehicle data sets
 - Publications and presentations: journals, SAE, NAM, ICEC, ICC, CAPoC, CLEERS
 - Student/faculty exchanges

Remaining Challenges & Barriers/Future Work

Remaining Challenges:	Future Work:		
 Decreasing exhaust temperatures from higher efficiency engines and advanced combustion modes. 	 Continue emphasizing low T emissions control priorities in CLEERS activities and plans Identify modeling strategies and key parameters for passive adsorber devices Develop a CLEERS adsorber protocol and bogin experimental characterization 		
	begin experimental characterization		
 Requirements for higher NOx conversion efficiencies coupled with limited accuracy of available NH₃ SCR device models, particularly at low temperatures and for predictions of NH₃ inventories. 	 Propose mechanisms for NO oxidation and NO SCR, emphasizing low T chemistry 		
	 Refine simple, accurate NH₃ storage modeling and parameter estimation strategies based on adsorption isotherms 		
 N₂O formation during LNT regeneration combined with inclusion of N₂O in greenhouse gas regulations. 	 Develop more accurate LNT models that will enable design of operating strategies that minimize N₂O formation 		
 Ongoing need for coordination and collaboration in developing simulation tools for next generation emissions control devices. 	 Continue planning, focus group, workshop, website, and DOE lab coordination 		

Summary

Relevance

 CLEERS supports the development of accurate and robust simulation tools that can be used to design, optimize, and control next generation emissions control technologies, which reduce fuel use by enabling higher efficiency engine operation and advanced combustion concepts

Approach

- Organized technical exchanges based on Focus Groups, Workshops, industry surveys, Crosscut updates, pre-competitive data & models
- Multi-scale experiments and modeling of commercial catalysts under relevant conditions

Technical Accomplishments

- Well-attended teleconferences and public Workshop; Crosscut Team reports; shared data and protocols; source for data and models for parallel DOE projects and CRADAs
- More accurate mechanisms for N_2O formation in LNTs and NO SCR and oxidation over Cu-SSZ-13
- Improved strategies for measurement, analysis, and modeling of NH₃ storage on SCR catalysts

Collaborations

- PNNL; ICT Prague; Politecnico di Milano
- Collaborations among industry, national labs, and universities through CLEERS organizational structure

• Future Work

- Continue coordination activities: workshop, telecons, website, priorities survey
- Continue mechanistic investigations into small pore Cu zeolite and BMW LNT materials, with emphasis on low temperature operating conditions
- Initiate characterization of passive adsorber materials and protocol development