High Strength, Light-Weight Engines for Heavy Duty Trucks

G. Muralidharan ORNL Roger D. England Cummins June 19, 2014

Project ID #PM 063

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Started FY12
- Completion FY17
- 35% Complete

Budget

- Total project funding: 50% DOE
 50% Cummins
- FY11:\$250K
- FY12:\$350K(CRADA start)
- FY13: \$100K
- FY14 \$200K

Barriers

1. Changing internal combustion engine combustion regimes

2. Long lead times for materials commercialization

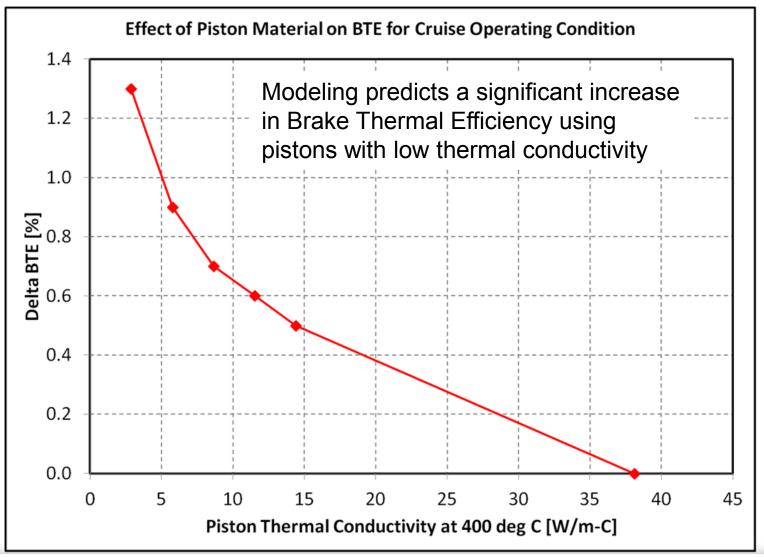
3. Need to reduce the weight in advanced technology vehicles

Partners/Collaborations

- Interactions/ collaborations:
 - Cummins Inc.

Relevance: Increased Operating Temperatures are Anticipated in High-Efficiency Engines

- Increased operating temperatures and improved thermal management will enable increases in *power density* (greater power output for the same sized engine)
 - Allows engine downsizing (or light-weighting) for the same power output
- Use of thermal insulation to decrease heat loss in certain components to achieve improved efficiency will result in increased temperatures in selected components within the engine
- New materials are needed to allow the engine to reach the efficiency, commercially viable durability, and emission targets



Relevance: New Materials Are Required to Achieve Improvement in Brake Thermal Efficiency (BTE)

- Cummins Development of high efficiency engine to achieve significant improvements in Brake Thermal Efficiency (BTE)
 - Basic thermodynamics indicates holding the energy in the gas increases pressure, and therefore power, with an equal amount of fuel.
 - Thermal modeling has quantified the possible increase in BTE achieved by decreasing heat losses within the cylinder
 - New piston materials are needed to decrease thermal losses, reduce reciprocating mass, and survive in this higher temperature combustion regime
 - Since greater heat is retained in the combustion gas, new exhaust handling materials are needed to withstand the higher exhaust temperatures between the cylinder and the turbocharger

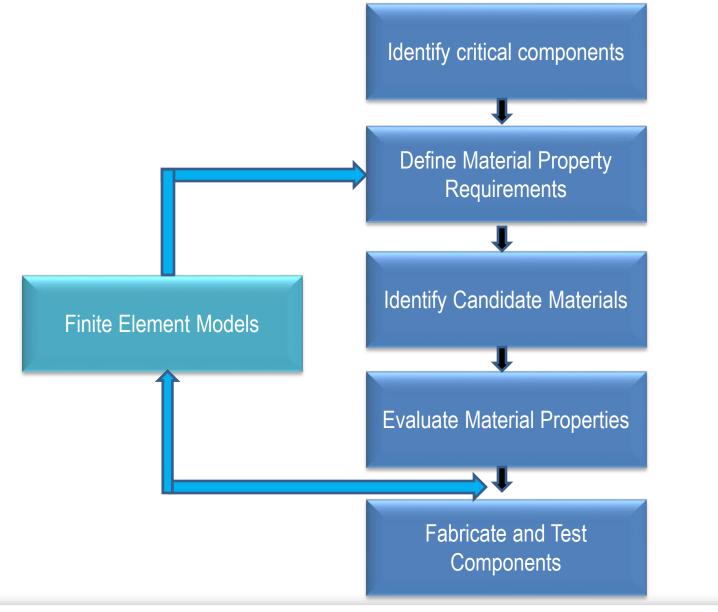
Relevance: New Materials Are Required to Achieve Improvement in Brake Thermal Efficiency (BTE)

Objectives

- Develop/ identify alternate materials systems to enable pistons to withstand higher temperatures
 - Develop/identify alternate materials for pistons
 - Develop/identify thermally insulating coatings
 - Develop/identify piston design to decrease heat transfer
 - Modeling indicates that a piston with an effective thermal conductivity of 2W/m °C increases BTE by ~1.5%
- Develop/ identify alternate materials to high SiMo cast iron that would enable an increase in the operating temperatures of <u>exhaust manifolds</u>

Milestones

Month/ Year	Milestone/ Go-No Go Decision	Description	Status
March 2013	Milestone	Complete oxidation testing up to 5000 hours of representative compositions of high Si-Mo cast iron, D5S, TMA6301, TMA4705, Cast AFA, and a cast austenitic stainless steel with less than 20 wt. % Ni	Complete
June 2013	Milestone	Complete constrained thermal fatigue testing of one composition from each class of alloys at one TMF condition	Complete
Sept. 2013	Milestone	Compile all required property data for finite element modeling for at least two promising alloy composition classes for exhaust manifolds	Complete
Sept. 2013	Go/No-Go	Identify next generation monolithic material choices for higher temperature operation of pistons, with capability of at least 50°C (preferably 100°C) over current design limit	Complete
Dec. 2014	Milestone	Evaluate potential performance of down-selected alloy using finite element model and mechanical and thermal property data	Complete
March 2014	Go/No-Go	Evaluate castability of selected candidate manifold alloy/s	Complete
June 2014	Milestone	Identify materials issues related to fabrication of multi-material pistons via additive manufacturing	On Track
Sept. 2014	Milestone	Fabricate and evaluate microstructures and thermal properties of multi-material composites on steel	On Track



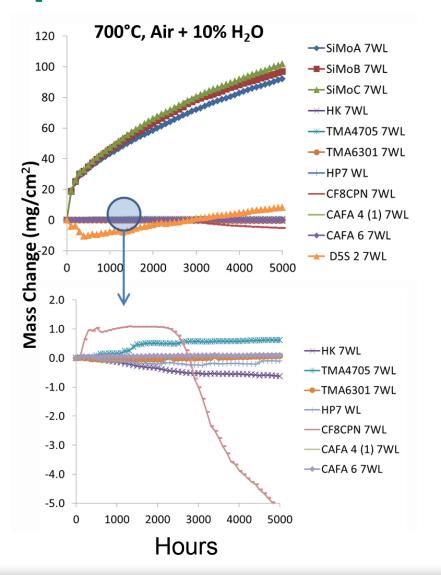
Approach

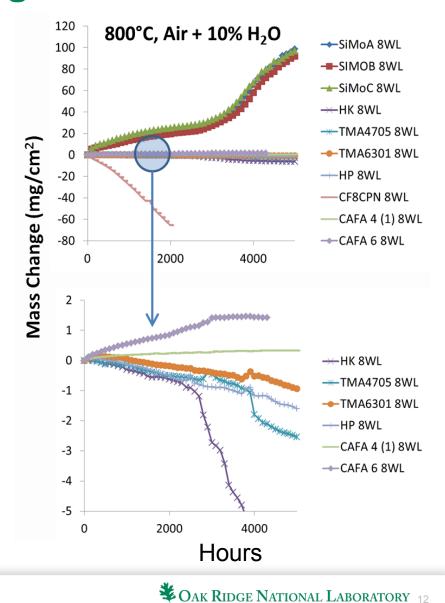
- Evaluate existing component design, materials, and manufacturing processes using finite element modeling
 - Calculate component temperature and stress exposure conditions
 - Identify materials requirements for critical components
- Down-select candidate materials and perform materials testing
 - Identify initial materials microstructure and property characterization matrix
 - Select/develop candidate alloys and associated manufacturing process to satisfy the materials property and manufacturing needs
- Modify design, fabricate and test prototype component:
 - Down-select new materials based on assessment of properties of candidate materials
 - Fabricate components, evaluate their performance, and compare with requirements

Approach Flow-Chart

Identified the Critical Property Requirements for Components

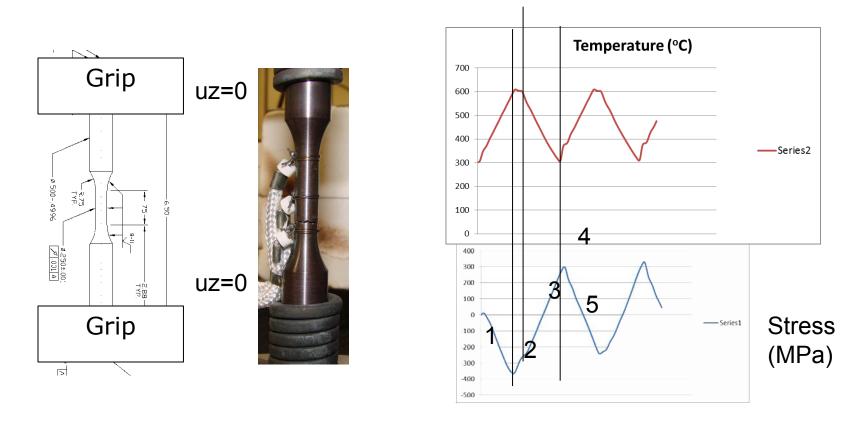
Component	Critical material properties of interest
Exhaust	Thermo-physical properties: Thermal expansion
Manifold	coefficient, specific heat, density, elastic modulus,
	thermal conductivity
	Mechanical properties: Room temperature strength,
	Constrained thermal fatigue strength, elevated
	temperature strength, high temperature fatigue
	strength, and creep strength
	Other Properties : Oxidation resistance,
	microstructural stability at high temperatures, and the
	ability to cast in complex shapes.
Piston	Thermo-physical properties: Thermal conductivity,
	density, thermal expansion and specific heat.
	Mechanical Properties: Constrained thermal fatigue
	strength, high temperature strength, and high
	temperature fatigue strength
	Other Properties : Oxidation resistance




Potential Alternate Candidate Alloys For Exhaust Manifolds Have Been Downselected

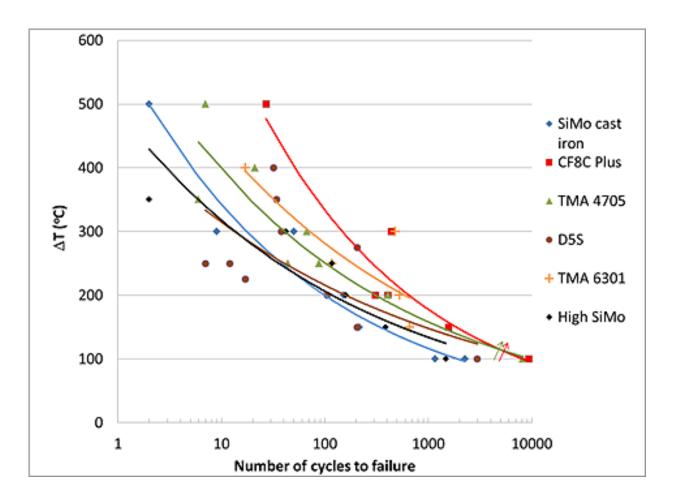
Alloy	Type of Alloy	Fe	Cr	Ni	Mn	Мо	Nb	W	Si	С	Remarks
High SiMo Cast Iron	Nodular ferritic cast iron	Bal.			0.3	0.6			4.0	3.45	Baseline alloys
D5S	Nodular austenitic cast iron	Bal.	2	35	0.5				5	1.9	High performance cast iron
Cast CF8C+ (ORNL Patent)	Cast Austenitic	Bal.	19	12.5	4.0	0.3	0.8	0	0.5	0.1	0.25N Low Ni, cost, chromia forming alloy
TMA 4705 (ORNL Patent) Nominal	Cast austenitic	Bal.	26	23.5	0.6	0.47	0.35	0.28	1.33	0.6	Intermediate Ni, chromia forming alloy
TMA 6301 (ORNL Patent) Nominal	Cast austenitic	Bal.	24	34.2	1.0	0.02	0.41	0.35	1.22	0.43	Higher Ni, chromia forming alloy
НК30	Cast austenitic	Bal.	25	20						0.3	Standard grade
Cast AFA (ORNL patent)	Alumina- forming Cast austenitic	Bal.	14	25	2	2	1	1	1	0.45	Arc casting data only, Al 3.5 C:0.2-0.5

Accelerated Oxidation Testing at 650-800°C of Candidate Exhaust Manifold Alloys in Air + 10% Water Vapor Demonstrates Advantages of Stainless Steels



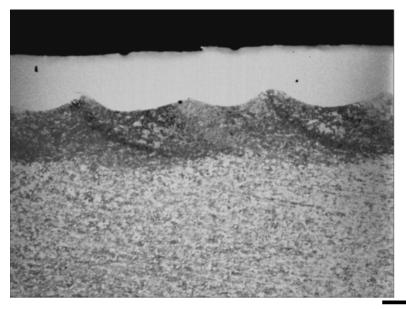
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Presentation name

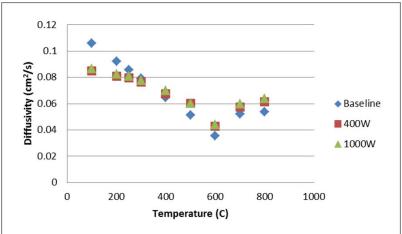

New Constrained Thermal Fatigue Test System Has Been Developed

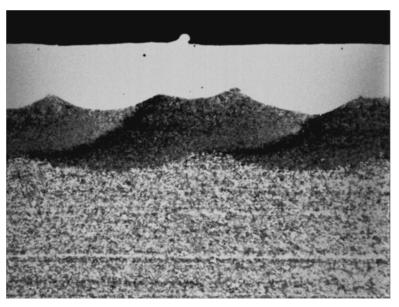
- 1 heating leads to compressive thermal stresses ($\alpha\Delta TE$)
- 2 compressive stress relaxation (creep) at maximum temperature hold
- 3 cooling to minimum temperature leads to tensile thermal stresses
- 4 fatigue hardening or softening curve is dictated by ΔT and Tmax
- 5 repeat the decrease in stresses due to heating

CF8C+ Shows Best Constrained Thermal Fatigue Properties



CF8C+ has been downselected for casting prototype exhaust manifold due to best combination of properties and castability


Pistons Have Been Coated to Reduce Thermal Diffusivity


- Alloy 625 coatings were applied to 4140 steels at ORNL using laser-based technique
 - 25% decrease in thermal diffusivity was observed up to 300°C

Laser power: 400 Watt

200µm

1000 Watt

Response To Reviewer's Comments

Project was not reviewed last year

Barriers

- Technical barriers of importance
 - Finite element modeling tools can only be used as a general guide for the design of exhaust manifolds
 - Temperatures and stresses are higher than those experienced previously
 - New materials have very different mechanical properties compared to cast iron, the material for which the models have been validated
 - Limited foundries are capable of successfully melting and pouring CF8C+ to cast exhaust manifolds
 - Guidance for foundry practices provided by ORNL
 - Standard Lab scale tests to simulate thermal cycling of pistons are not available
 - Temperature and thermal cycles experienced by the piston are difficult to characterize accurately and need to be approximated using models

Future Work (FY14)

- An exhaust manifold will be cast using CF8C+ at a commercial foundry with previous experience and integrity and materials properties will be evaluated
- Feasibility of additive manufacturing of multi-material pistons will be evaluated
- Effect of alternate thermal barrier coatings on thermal properties of steel substrates will be evaluated
- Durability of thermal barrier coatings on piston materials in the presence of thermal cycling will be evaluated

Summary

- Relevance: Increased operating temperatures and improved thermal management will enable increases in *power density* (greater power output for the same sized engine) and allow engine downsizing
- **Approach/Strategy:** New materials that have the potential to increase the temperature capabilities of pistons and exhaust manifolds will be identified. Components will be fabricated and tested.
- Accomplishments: One potential candidate (CF8C+) for exhaust manifolds has been identified based upon its oxidation resistance and constrained thermal fatigue properties. Thermal barrier coatings have been fabricated and feasibility to reduce thermal diffusivity in pistons has been demonstrated.
- **Collaborations:** This is a CRADA with Cummins
- Proposed Future Work: Prototype exhaust manifold will be cast, materials
 properties will be characterized, followed by engine testing. Fabrication routes for pistons
 including additive manufacturing and associated materials issues will be evaluated to
 enable a path towards low thermal conductivity pistons.

