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Budget 
Total project funding: $2,425 K 

•  DOE share: $1,940K 
•  Contractor share: $485K 
FY 2014: $1,243K 
FY 2015: $1,182K 

Timeline 
• Project Start – Oct. 01 2013 

• Project End – Sep. 30 2015 

• Overall % Complete: 25% 

• FY 2014 % Complete: 40%  

Barriers 
• Energy/power density 
• Cycle and calendar life 
• Battery component 

compatibility 
• Abuse Tolerance 

Partners 
• EC Power (subcontract) 
• Argonne National Lab 

(Zhengcheng Zhang, collaboration) 
• Lawrence Berkley National Lab 

(Gao Liu and Vincent Battaglia, 
collaboration) 

Overview 
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Develop a lithium-ion battery system with high energy 
density, high power density, and good cycle life, and safe 
operation for EV applications. 

RELEVANCE – OBJECTIVES (1) 
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Project scope 
 

Design and Fabrication of a lithium-ion 
cell: 

 Layered Oxide Cathode – high 
energy/power, stable 

 Advanced Silicon Alloy-carbon Anode 
– high energy/power, stable 

 Functional Binder – Improve cyclability 

 Electrolyte – stabilize electrodes and 
improve safety 

 
 

Performance targets 

2.5 Ah cells 
 

330 Wh/kg (770 Wh/L) 
 

1600 W/L 
 

Cycle life 500+ cycles 
 

 Excellent safety characteristics 

Relevance 



Project Milestones 
• Scale up the state-of-the-art anode and cathode synthesis (in progress) 

 
• Delivery of baseline cells (in progress) 

 
• Si-carbon anode with 1500 mAh/g capacity, 95% capacity retention 

after 100 cycles at C/3, coulombic efficiency >99% (completed) 
 

• Surface-coated, Ni-rich layered oxide cathode with 190 mAh/g capacity, 
95% capacity retention after 100 cycles at C/3 (in progress) 
 

• Si-carbon anode with 1900 mAh/g capacity, 95% capacity retention 
after 300 cycles at C/3, coulombic efficiency >99.9% (in progress) 
 

• Surface-coated, Ni-rich layered oxide cathode with 220 mAh/g capacity, 
95% capacity retention after 300 cycles at C/3 (in progress) 
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Approach / Strategy 

  
  

• Nickel-rich layered oxide cathodes 
  - Control the composition, microstructure, and morphology through novel synthesis  
     and processing approaches  
  - Condition the surface to suppress aggressive reaction with the cathode surface 

• Si alloy-carbon composite anodes 
  - Design micro-sized Si/Si alloy-carbon anodes composed of nanoscale building 
blocks to enable both good electrochemical performance and high tap density 
  - Construct conductive network at the electrode level to achieve high areal capacity 

• Functional binders 
  - Prepare conductive and crosslinked binders to form interpenetrated conductive 
network to accommodate volume change of Si and improve integrity of Si electrodes 

• Electrolytes 
  - Develop novel fluorinated electrolytes and additives to stabilize the anode SEI, 
prevent electrolyte reaction at the cathode surface 
  - Improve cell safety by enhancing high temperature stability and decreasing 
flammability 
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I. Micro-sized Spherical Si-porous C composite 

Bottom-up synthesis using commercial 
Si nanoparticles 
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Technical accomplishments  

 
 Micro-sized 
 Spherical particles 
 High capacity 
 High tap density >1 g/cm3 

 

silicon 

porous 
carbon 

100 μm 
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II. Scale up Boron-doped Porous Si-C Composite 

B-doped 
Si unit 

 
 Large-scale production 
 Micro-sized 
 B doping improves conductivity 
 Good cyclability 
 High tap density 0.8 g/cm3 

 

1500 mAh/g 
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III. Dual Conductive Network-Enabled Graphene/Si-C 
Composite 

graphene silicon carbon 

 
 Micro-sized 
 Conductive network among particles 
 Good cyclability 
 High tap density 0.8 g/cm3 
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Gravimetric capacity 

IV. High Areal Capacity Electrodes 

Areal capacity 

Materials 

Electrodes 
? 

 
 Industrial slurry coating approaches 
 Good cyclability 
 Uncompromised high efficiency even at high mass loading 

99.5% 
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Room temperature for 10 cycles then 60 oC 
400 mA/g EC/DEC/FEC LiPF6 

V. High Temperature Performance and Screening 

RT 60oC 

RT 60oC 

 High capacity 
 Fast fading 
 Low CE 

 Medium capacity 
 Stable cycling 
 High CE 

Low capacity 
Stable cycling 
High CE 
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Si/PFM – 1st generation 

Si/PEFM -  2nd generation 

Non-polar 

Electric conduction 

Non-polar 
Polar 

PFM       

Electric conduction 

2nd generation of binder PEFM 

PEFM 

1st  generation of binder PFM 

VI. Conductive Binder for Si Anodes 

 
 Electrically conductive network for improved cycling stability 
 High specific capacity using commercial Si nanoparticles 
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VII. Crosslinked Binder for Si Anodes 

Commercial Si nanoparticles 

4.3 mAh/cm2 

 
 Interpenetrated polymer network for much improved cycling stability 
 High areal capacity using commercial Si nanoparticles 
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Theoretical capacity: 280 mAh/g 

• Low capacity 
• High cost 
• Good cyclability 

• High capacity 
• Lower cost 
• Poor cyclability 

LiCoO2 Ni-rich 

Surface control? Or … 

Sample Core Shell Discharge capacity  

Li[Ni0.8Co0.2]0.7[Ni0.2Mn0.8]0.3O2 Ni0.8Co0.2 Ni0.2Mn0.8 209 mA h g-1 

Li[Ni0.8Co0.2]0.7[Ni0.5Mn0.5]0.3O2 Ni0.8Co0.2 Ni0.5Mn0.5 187 mA h g-1 

Li[Ni0.8Co0.2]0.7[Ni0.8Mn0.2]0.3O2 Ni0.8Co0.2 Ni0.8Mn0.2 176 mA h g-1 

Li[Ni0.8Co0.2]0.7[Ni0.2Mn0.8]0.3O2 with Ni-poor, Mn-rich surface 
exhibits the highest capacity 

VIII. Layered Oxide Cathodes 
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VIII. Layered Oxide Cathodes – Characterization  

LiNi0.62Co0.14Mn0.24O2 with  
uniform Ni distribution 

Li[Ni0.8Co0.2]0.7[Ni0.2Mn0.8]0.3O2 
With Concentration-gradient  

Co 

Ni 

Mn 
• 3 - 4 µm particle with 

concentration-gradient structure  
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VIII. Layered Oxide Cathodes - Electrochemical Performance 
(I) 

• The  “concentration-gradient” sample 
with Ni-poor, Mn-rich surface shows 
better cyclability with a high capacity 
of ~ 210 mA h g-1 

Discharge 

LiNi0.62Co0.14Mn0.24O2 with  
uniform Ni distribution 

“Concentration-gradient”  
Li[Ni0.8Co0.2]0.7[Ni0.2Mn0.8]0.3O2 
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• The higher rate capability of the “concentration-
gradient” sample is due to the Ni-poor, Mn-rich 
surface and high electronic conductivity in the core 

VIII. Layered Oxide Cathodes - Electrochemical Performance 
(II) 

Cyclability at 1C rate Rate capability 

Li[Ni0.8Co0.2]0.7[Ni0.2Mn0.8]0.3O2 
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VIII. Layered Oxide Cathodes - Voltage stability 
LiNi0.62Co0.14Mn0.24O2 

with uniform Ni distribution 

• The  “concentration-gradient” 
sample shows superior voltage 
stability during cycling due to 
reduced surface reaction with the 
electrolyte 

“Concentration-gradient”  
Li[Ni0.8Co0.2]0.7[Ni0.2Mn0.8]0.3O2 
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IX. High-Voltage Electrolytes - Oxidation Stability 
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 Fluorinated electrolyte/additive enables 

higher capacity at 4.8 V 

 

Fluorinated Electrolyte 
+ Additive  

LiPF6 EC/EMC (3/7) 

4.5 V 

4.8 V 
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TFP-PC-E-1:  
1.2 M LiPF6 in TFP-PC-E/EMC (3/7, w/w);  
Voltage window: 4.8–2.7 V 
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Collaboration 

• Working with EC Power on pouch cells development and testing. 
 

• Working with Argonne National Laboratory on concurrent high 
voltage electrolyte development and testing. 
 

• Working with Lawrence Berkeley National Laboratory on conductive 
binders development and testing. 

 
• Independent testing of pouch cells is being conducted by Idaho 

National Lab. 



Remaining Challenges and Barriers 
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• Key challenges in anode are improving the 1st cycle efficiency of Si/Si alloy - carbon 

anodes and subsequent efficiency. 
 

• New processes need to be developed and optimized to incorporate new binders to 
improved electrode performance 
 

• The cyclability of Ni-rich cathodes needs to be improved while keeping the capacity 
above 200 mAh/g by appropriate surface control. 
 

• New electrolyte is desired to further improve the surface stability of high voltage 
high capacity cathode with good anode compatibility for an extended cycle life 

  
 



Proposed Future Work 

  
  

 
• Optimize the composition and structure of electrodes to maximize cycling stability 

and energy density. 
 

• Develop a prelithiation approach to improve 1st cycle efficiency of Si/Si alloy-carbon 
anodes. 
 

• Investigate the compatibility of new binder with Si/Si alloy-carbon micro-size 
particles. 
 

• Develop an understanding of the factors influencing the electrochemical 
performances of Ni-rich layered oxide cathodes, e.g., determine bulk and surface 
compositions/atomic arrangements with TEM, XPS, and TOF-SIMS. 

  
• Modify the surface of Ni-rich oxides with FePO4 or Al2O3 to provide better chemical 

stability with the electrolyte at higher voltages. 
 

• Develop fluorinated electrolyte solvents and additives for Si alloy-carbon composite 
anodes and Ni-rich layered oxide cathodes. 
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• Three types of micro-sized Si-based anode materials exhibit good cycling life and 
high efficiency. 

 

• High areal capacity (>3.2 mAh/cm2) and good high temperature (60 oC) 
performance with high efficiency (99.5%) have been achieved by Si-based 
electrodes prepared by the industrial viable slurry coating approach. 

 

• Conductive polymer binders show much improved capacity and cycling stability 
and cross-linked binders show improved cycling performance over NaCMC for Si 
anode materials. 

 

• Ni-rich layered oxide cathodes with a Ni-poor, Mn-rich surface and Ni-rich core (or 
a concentration-gradient structure) exhibit high capacities of > 200 mA h g-1 with 
good cyclability and rate capability due to better surface stabilization. 

 

• Fluorinated electrolyte/additive for layered oxides cathodes enables the delivery of 
higher capacity at 4.8 V. 

Summary 
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Technical Back-Up Slides 



Commercial Baseline Si Anode Materials 

 
 

 Spherical particles 
 Particle size 50-150 nm 
 High crystallinity 

 



 
 C/25 for 3 cycles, C/3 lithiation and C/2 delithiation 
 Electrolyte: EC/DEC=1, 10 wt% FEC, 1 M LiPF6 
 Cut-off voltage: 0.01 V~1V 
 25% AB, 50% silicon, 20% CMC and 5% PVA 
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Thickness: 31 um 
Porosity: 80.8% 
loading: 0.71 mg/cm2 

First cycle efficiency: 87.19% 
 
Severe fading during initial cycles 

Capacity < 1500 mAh/g 

Performance of Commercial Si Anode Materials 



26 

1) Epoxide conversion goes to maximum in 4 days (>97%) monitored by GC-MS 
without internal standard calibration.  

2) Pure fluorinated cyclic carbonate was obtained by two vacuum distillation (90  
C/0.3 mmHg) processes affording pure product with >99.8% purity (by GC-MS); 

yield is ~45%; 
3) Vacuum-distilled fluorinated cyclic carbonate was further characterized by 1H NMR, 

13C NMR, 19F NMR, and FT-IR and K-F titration. 

Organic synthesis setup 

CO2 
inlet 

Bubbler 

Reaction 
mixture 

CO2 (gas, 1 atm.)
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High-Voltage Electrolytes - Solvent/Additive Synthesis 
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Voltage window: 4.95–3.5 V 

High-Voltage Electrolytes - Voltage Stability (LNMO/Li) 
TFP-PC-E-1:  
1.2 M LiPF6 in TFP-PC-E/EMC (3/7, w/w);  
Voltage window: 4.95–3.5 V 
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