Hierarchical Assembly of Inorganic/Organic Hybrid Si Negative Electrodes

PI: Gao Liu gliu@lbl.gov

Lawrence Berkeley National Laboratory Berkeley, CA 94720

June 17th, 2014

Project ID: ES223

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

Project started: FY 2013 Project end date: FY 2016 Percent complete: 40%

Budget

Total project funding -DOE share: \$2,000K, 100% FY13 funding \$500K FY14 funding \$500K FY15 funding request \$500K

Barriers Addressed

Performance: Low energy density and poor cycle life Life: Poor calendar life Cost: High manufacture cost (Research in high energy system)

Partners

LBNL (Vince Battaglia, Venkat Srinivasan, Robert Kostecki, Wanli Yang, Andrew Minor, Lin-Wang Wang) Pacific Northwest National Laboratry Argonne National Laboratory General Motors Hydro Quebec FMC Lithium Daikin America This proposed work aims to enable Si as a high capacity and long cycle-life material for negative electrode to address two of the barriers of lithium-ion chemistry for EV/PHEV application, insufficient energy density and poor cycle life performance.

1.Understand the fundamental issues related to the Si composite electrode failure

2.Develop material strategies, such as functional conductive polymers and electrolyte additives to overcome failure mechanism

3.Develop electrode assembly strategies to overcome the electrode level failures

4.Demonstrate the performance improvement via electrode and cell level testing and analysis

This work addresses the adverse effects of Si volume change and minimizes the side reactions to significantly improve capacity and lifetime to develop negative electrode and significantly improve the coulombic efficiency. The research and development activity will provide an in-depth understanding of the challenges associated with assembling large volume change materials into electrodes, and will develop a practical hierarchical assembly approach to enable Si materials as negative electrodes in Li-ion batteries.

Milestones

FY 2013

- 1. Measure the adhesion of the triethyleneoxide (TEO) containing conductive polymer binder, and characterize the electrode performance (Complete)
- 2. Design and synthesize the alkyls substituted VC additives (Complete)
- 3. Investigate the performance of the substituted VC additive electrolyte vs. baseline electrolyte (Complete)

FY 2014

- 1. Design and synthesis 3 more PEFM functional conductive polymer binders with different EO content to study the adhesion and swelling properties of binder to the Si electrode performance (Complete)
- 2. Down select Si vs. Si alloy particles and particle sizes based on cycling results (Complete)
- 3. Prepare one type of Si/conductive polymer composite particles, and test its electrochemical performance (On schedule)
- 4. Design and synthesize one type of vinylene carbonate derivative that targeted to protect Si surface, and test it with Si based electrode (On Schedule)

Approach – Combine functional organic material synthesis, advanced diagnostic and electrode design to achieve high energy-density Si based electrode

1. Using polymer design and synthesis to developed functional conductive polymer binders for large volume change Si based materials *Understand the three requirements for binders: electrolyte intake and ion conducting, adhesion, and electron conducting; and develop new functional conductive polymer binders for Si.*

2. Using in situ TEM to understand the nano and meso scale activities of the Si composite electrode

Visualize charge inequality of the Si composite electrode; understand the the performance of functional conductive polymer in the electrode level; quantified the electrode meso volume change to the bulk electrode volume change.

3. Hierarchical electrode designs to improve energy density Design and fabricate electrode with elastic properties to accommodate Si volume change and maintain stable interface, and maintain porosity of the electrode during cycling.

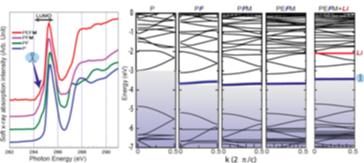
4. Understand interface reactivity and develop advanced electrolyte additives to improve SEI and coulombic efficiency Use spectroscopy techniques to understand the surface chemical properties of the SEI layer; and develop new additives to improve SEI stability.

Accomplishments – Design and synthesize functional conductive polymer binders for large volume change Si based materials

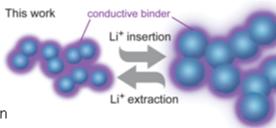
New functional binder design Combining:

- 1. Electrically conductivity
- 2. Binding adhesive
- 3. Li-ion transport

Frist generation: PFM


Non-polar

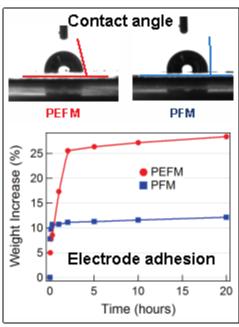
Electric conduction


Second generation: PEFM

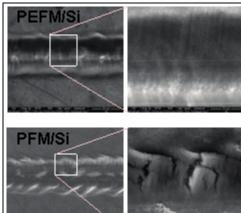
Similar LUMO energy levels

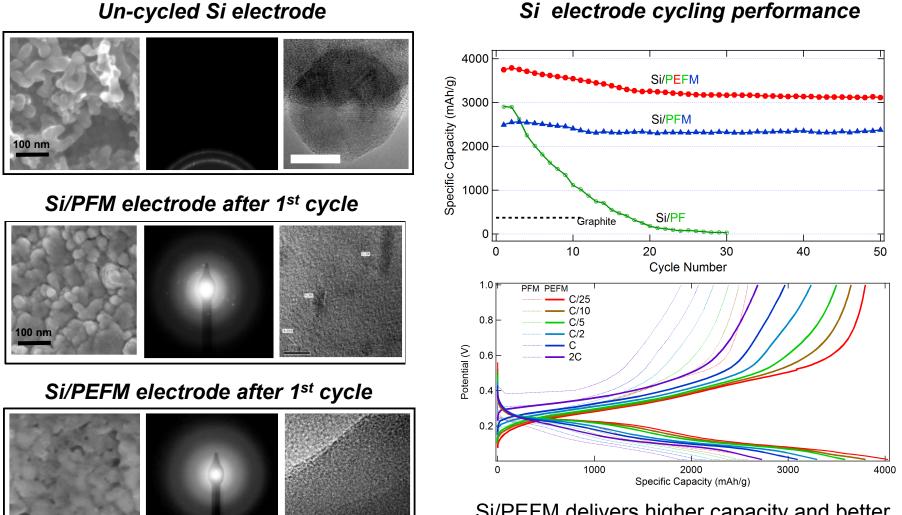
Functional conductive polymer binder/Si electrode

Delithiated


Lithiated

Advantages •Use Si particles •Fully compatible with conventional lithium-ion technologies

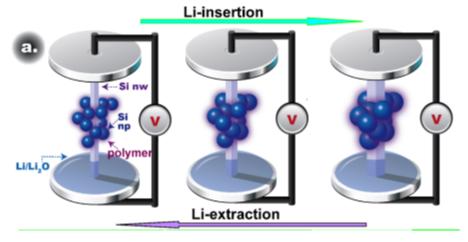

R&D100 award winning invention of 2013



Scratch test of electrodes

Accomplishments – Design and synthesize functional conductive polymer binders for large volume change Si based materials

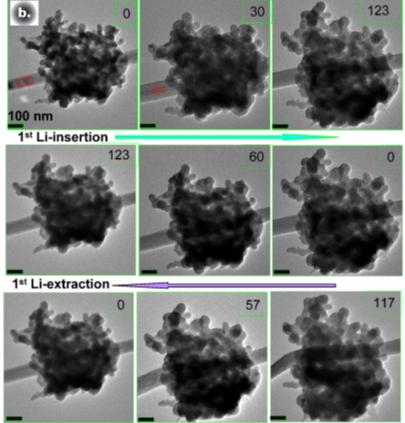
Si/PEFM delivers higher capacity and better rate performance.


Lawrence Berkeley National Laboratory

10 nm

00 nm

Accomplishments - Use in situ TEM to understand the nano and meso scale activities of the Si composite electrode, in collaboration with Dr. Chongmin Wang of electron microscopy center at PNNL


Schematic drawing of the Si anode on Si NW during lithium insertion and extraction

The functional conductive polymer approach exhibits superior electrochemical cycling stability and higher energy density due to the resilient bonding between the conductive polymer and Si NPs. All Si NPs can be lithiated and cycled stably without electrical contact disruption in this approach.

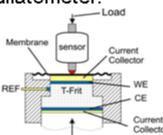
Video clips will be showing at the ARM review presentation

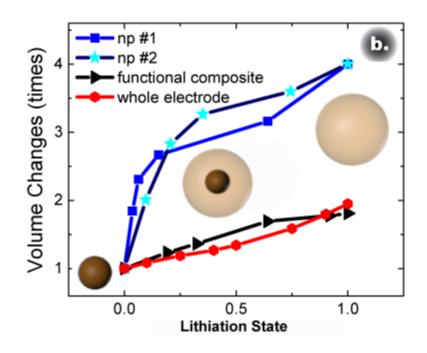
Frames of the in-situ TEM observation lithium insertion and extraction processes of the Si/functional conductive polymer anode at different time



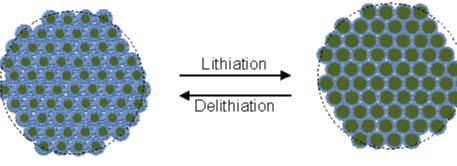
2nd Li-insertion

First row : 1st lithium insertion; second row: 1st lithium extraction; third row: 2nd lithium insertion


Accomplishments - Using in situ TEM to understand the nano and meso scale activities of the Si composite electrode


The in situ TEM investigates a small piece of composite electrode. The expansion and contraction of the composite can be calculated based on the TEM imaging.

The bulk electrode volume change during cycling is mainly in the form of electrode thickness change, which can be observed directly by electrochemical dilatometer.

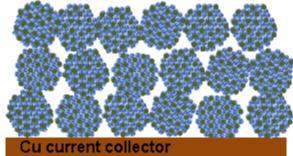


Although the material level volume change is as high as 300% for Si nanoparticles, the composite level volume change is around 100%.

The information is important for electrode level architecture design.

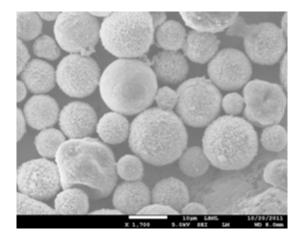
Accomplishments – Hierarchical electrode designs to improve energy density

Secondary composite particle



🌒 Si nanoparticles

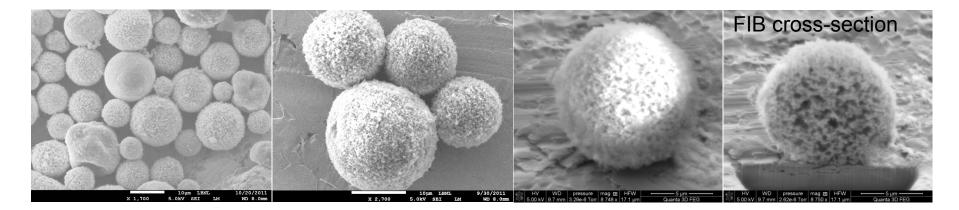
Conductive polymer with porosity

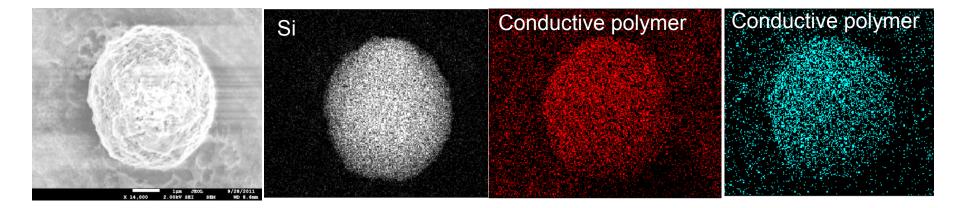

Spray precipitation method to generate secondary particles

Secondary composite particles electrode

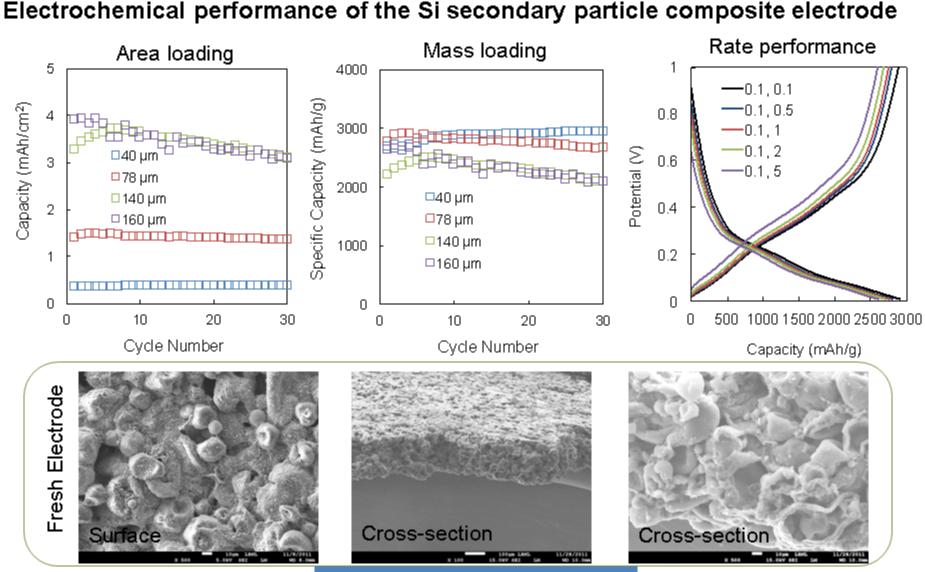
Advantages: Large micron size porosity, and stable dimension

SEM image of Si/PFM Secondary particles

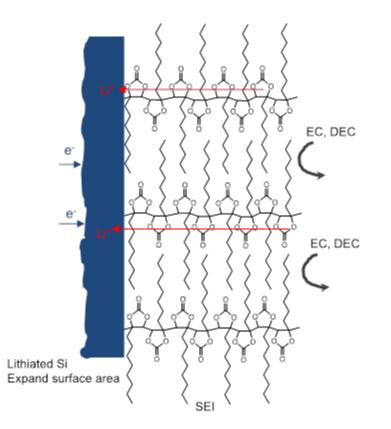


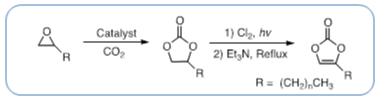

Si/Conductive polymer in chlorobenzene Sonication spray

Lawrence Berkeley National Laboratory

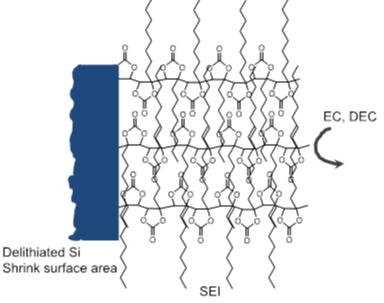

Accomplishments – Hierarchical electrode designs to improve energy density

Si composite secondary particles

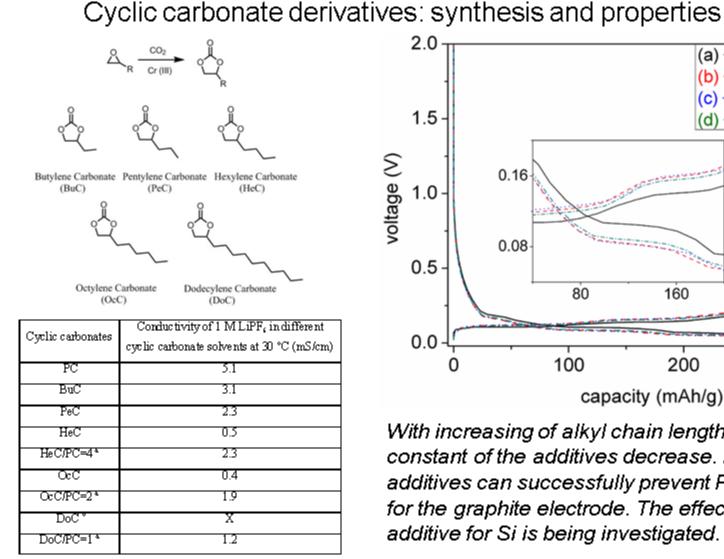

Accomplishments – Hierarchical electrode designs to improve energy density

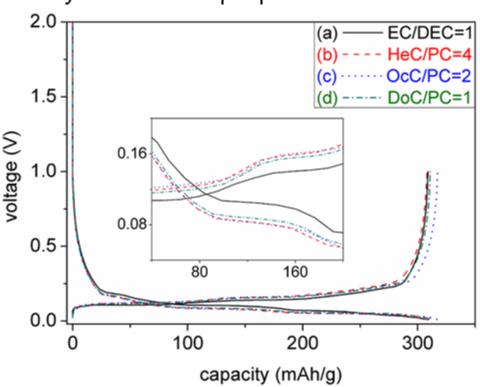

Lawrence Berkeley National Laboratory

Accomplishments - Understand interface reactivity and develop advanced electrolyte additives to improve SEI and coulombic efficiency


Compliant SEI layer formation with octyl-VC on the surface of Si when Si is lithiated.

Alkyl vinylenecarbonate additives


The compliant SEI layer compressed when Si is delithiated rather than breaks and falls off.



Alkyl vinylenecarbonate additives may form elastic SEI on the surface of Si, preventing SEI cracking and reforming during cycling.

Lawrence Berkeley National Laboratory

Accomplishments - Understand interface reactivity and develop advanced electrolyte additives to improve SEI and coulombic efficiency

With increasing of alkyl chain length, the dielectric constant of the additives decrease. However, the additives can successfully prevent PC intercalation for the graphite electrode. The effectiveness of this additive for Si is being investigated.

Collaborations - Team functions

1. Lawrence Berkeley National Laboratory

In collaboration with BATT PIs, conducted functional conductive polymer design and synthesis for Si based anode materials, performed electrode design fabrication and testing.

In Collaboration with DOE user facility scientists, conducted soft X-ray diagnostic of the materials and electrode, performed advanced TEM analysis of materials, and performed modeling study of materials and electrodes

2. Pacific Northwest National Laboratory

Performed In situ TEM analysis of the nano and meso scale phenomenon in the functional conductive polymer binder/Si composite electrode

3. General Motors

Measured in situ bulk physical dimension change of electrode using dilatometer and mechanical response characterization using nano-indentation. Performed electrode and surface chemical analysis using TOF-SIM techniques.

Collaborations - Team functions

4. Argonne National Laboratory

Provided information for material screening and evaluation of the conductive polymer binder and Si materials.

5. Umicore

Provided pilot scale NanoGrain experimental Si materials.

6. Hydro Quebec

Provided new Si based materials

7. Daikin American

Provided electrolytes for Si based materials and electrode

8. FMC Lithium

Provided lithium based materials

Proposed Future Work

- 1. The team are on schedule to accomplish the milestones defined in the remaining FY2014.
- 2. For the FY 2015, we propose to investigate in the following areas. The detailed milestones will be developed based on the on-going investigation, AMR review comments and discussions between the collaborators.
 - a. Design and synthesis at least two functional conductive polymers for Si based electrode.
 - b. Develop methodologies to improve the Si electrode first cycle efficiency to 90%.
 - c. Design and synthesize new surface stabilizing additive, and test it with Si based electrode
 - d. Apply hierarchical electrode design to achieve a 3 mAh/cm² loading.

Summary

- 1. Functional conductive polymer binders play a critical function in deliver stable and high capacity cycling for the large volume change Si materials in a composite electrode.
- 2. The design of functional binders need to consider three aspects: electron conductivity, adhesion and mechanical properties, and electrolyte swelling for ion-conduction.
- 3. Characterization based on in situ TEM of the composite electrode has demonstrated the superb performance of the functional conductive polymer binder over the conversional non-conductive polymer binder and conductive additive system.
- 4. Hierarchical design of particles and electrode architecture maintain electrode 3D structure to ensure a higher area capacity and stable cycling performance.
- 5. Electrolyte additives form stable SEI, improving coulombic efficiency.