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• Project start date: 1/1/13 
• Project end date: 12/31/16 
• Percent complete: 33% 

• Life (capacity fade) 
• Performance (high energy density) 
• Rate 

• Total project funding: $1.1M 
• Funding received in FY13:  

$265,913 
• Funding for FY14: $272,197 
 

Timeline 

Budget 

Barriers 

• Brett Lucht  
• Jordi Cabana 
• Kristin Persson 
• Guoying Chen 
• Stan Whittingham 

BATT collaborators 

Overview 

Relevance:  Objectives - 2013/14 
•Identify major solid electrolyte interphase (SEI) components, and their spatial proximity, 
and how this changes with cycling                   (capacity fade) 
•Complete structural/mechanistic studies of Si    (performance) 
•Investigate local structural changes of high voltage/high capacity electrodes on cycling  
      (performance/capacity fade) 
2015/16 
•Contrast SEI formation on Si vs. graphite and high voltage cathodes  (capacity fade) 
•Correlate Li+ diffusivity in particles and composite electrodes with rate  
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• Optimizing Si performance  
– Structures formed on cycling 

   
– Reducing overpotential 
– Building a better SEI  

 
• SEI studies  

– NMR studies of local structure as a 
function of cycling  
 

 
• Improving rate performance 

(electrode tortuosity studies) 
 
 

 
• High voltage spinels  

 
 
 

 
 
 

Approach/Strategy 
 

– Development of new platform for in 
situ studies.   

– Li and NMR studies of structure  
– NMR and electrochemical studies 

of Si coatings/surface treatments  
 

– 13C NMR studies of 13C enriched 
electrolytes to study SEI organic 
components; 19F and 31P studies of 
inorganics  
 

– Develop pulse field gradient (PFG) 
approach to study electrode 
tortuosity (LiCoO2 current model 
compound) 
 

– Development of in situ methods to 
study phase transformations   

– In-situ and ex-situ NMR studies of 
Li+ transport and structural 
changes 
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Milestones  
• Identify major components (LiF, phosphates, carbonates and organics) in Si 

SEI by NMR methods.  (Dec-13). Complete 
• Correlate presence of SEI components with cycle number and depth of 

discharge of Si. Complete preliminary TOF-SIMS measurements to establish 
viability of approach. (Mar-14) Ongoing.  Difficulties encountered with 
sample reproducibility and Si cracking (TOF-SIMS) 

• Identify SEI components in the presence of FEC and VC in Si and determine 
how they differ from those present in the absence of additives. (Jun-14) 
Ongoing 

• Go/No-Go: Stop Li+ PFG diffusivity measurements of electrodes.  Criteria: If 
experiments do not yield correlation with electrochemical performance. (Sep-
14) PFG studies initiated of LiCoO2. 
 

Approach/Strategy (cont.) 



Again small 
clusters only 
seen in 2nd 

process Salager et al. in prep. 
 

Optimizing Si performance: I  
• Used 29Si NMR and Li NMR to study Si cluster formation and bond breakage as 

function of state of charge  
- Showed that mechanisms for lithiation are different in smaller Si particles 

7Li NMR     29Si NMR 

        200 nm Si 
15 nm 

 

• Investigated (Li) defects 
in Si by DFT-based 
computations  

A.J. Morris et al., Phys 
Rev B (2012) 

Technical Accomplishments and Progress 



CF+50nm-Au+SiNWs 

 CF 

SiNWs 

Cross sectional SEM images 

K. Ogata 
C. Kerr 
S. Hoffman 
 

Optimizing Si performance II: Studying 
nanoparticles by in-situ NMR  

   
Inspired by: 
C. K. Chan. … R. A. Huggins, Y. 
Cui, Nature Nanotechnology, 3, 
31 (2008) 



In-situ NMR of Si 
Nanowires: 

Ideal Model Systems for Studying 
Mechanisms – allow GITT and PITT 

experiments to be followed in situ  

P-doped Si 

Li15+xSi4 Clusters 

Galvanostatic 
mode 

PITT 

Detect Si=Si defects in Li15Si4 
=> Set overpotential voltage on charge 

Ogata et al., Nat. Commun. (2014) 



SEI Studies: Si  

SEI Layer ~ 10 - 100 nm thick
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Structure of the interface? 

System: C + Si, 1 : 1 

•  SEI as a function of voltage? 
•  SEI as a function of cycle 

number?  
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Collaboration with B. Lucht:  
Structures of reduced VC and FEC 

VC  
FEC 

185 = RCO2 
128 = C=C 
69 – 71 = OCH2 

Very similar polymers .. 
 
Now we can compare spectra 
with those obtained when using 
VC and FEC as additives  
  



Reducing SEI Formation: Si surface 
coatings improve capacity retention  

APTMS	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  TEOOS 

	  	  	  	  	  	  	  	  	  PMVEMA	  	  	  	  	  	  	  	  	  	  (3-Glycidyloxypropyl)trimethoxysilane 
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-  Echem performance improvement:  
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NMR studies in progress to study 
nature of grafting  



Development of In situ NMR method for 
Paramagnetic Cathode Materials: 

 Li1.08Mn1.92O4 Electrode Orientation = 54.7 Degrees 

1st cycle 

 7Li  



Relaxation (T2) effects – and thus spectral 
intensity - are strongly affected by Li motion  
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Use In-situ T2 Measurements to Study Li 
Dynamics as a Function of Temperature 

 
• Rapid Li+ and electronic motion in partially charged samples 
• Clear evidence for solid solution from 1 Li to 0.5 Li 
• Ordering tendency @ 0.5 Li -  

 
• Method can be used to study dynamics during (de)lithiation 
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High Voltage Spinels (Li(Ni0.5Mn1.5O4) - Ordering 
affects the electrochemistry @ the 4.8 V process  

9 Mn4+ 3 Ni2+ 

8 Mn4+ 4 Ni2+ 
10 Mn4+ 2 Ni2+ 

6 Li NMR 

946 ppm 

P4332: Ni2+ and Mn4+ 
ordering  

Fd-3m: Ni2+ and Mn4+  
randomly distributed 

DISORDERED 

ORDERED 

50 mV  

50 mV  

With J Cabana (LBNL/UIC) C Kim (LBNL) 



In-situ 7Li NMR – 
Mechanisms of 
(de)lithiation 

Disordered 900 C spinel  

Increased Li mobility 
Solid solution 

Intensity 
T2 corrected 

2 - phase “T2” Relaxation studies show  
solid solution followed by 2 
phase 

Cation ordering @ x = 0.5  

Intensity vs. cycling  



In-situ 7Li NMR – Lithium & 
electrolyte region: Follow Li 

dendrite formation and 
electrolyte decomposition in 

situ 

Electrolyte 
decomposition 

Dendrite 
formation 

Ordered 
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Summary 
• Silicon – structural work essentially complete.   
• Used 29Si NMR to study cluster formation on lithiation  
• Developed in-situ NMR method for studying nanowires  
• Identified source over large “overpotential” on charging fully lithiated 

Li15Si4 phase 
• Si SEI – NMR methodology has been developed.   
• Clear NMR signatures of many SEI components identified  
• Si Coatings – Grafting of small molecules helps improve 

capacity retention.    
• Tortuosity – PFG method demonstrated  
• High Voltage spinels – Demonstrated novel NMR methodology 

to study paramagnetic materials  
• Approach can be used to study Li ion dynamics, cation ordering, 

solid solution vs. 2-phase behaviour  
• Used to study nature of electrode reactions for the high voltage 

spinel Li(Ni0.5Mn1.5)O4, electrolyte decomposition and Li dendrite 
formation  

• Ex-situ NMR highly sensitive to cation (Ni/Mn) order  
 
 
 
 
 
 
 



Future Work 
•Silicon structure  
Future work will focus on (i) Reverse Monte Carlo simulations of amorphous phases 
(with pair distribution function analysis) to quantify Si amorphous structures and (ii) the 
effect of P doping on rate, overpotential (energy efficiency) and lithiation mechanisms. 
•Si SEI    
•Further 2D NMR experiments of fully enriched EC will be performed for more detailed 
structure solution of decomposition products (including reduced FEC/VC)  
•Future work will focus on cycling studies, and structure f(voltage) and VC/FEC 
•C-Si experiments will be initiated to investigate SEI/Si interface 
•Si Coatings  
•Detailed NMR studies will be performed to understand nature of grafting and how that 
changes with cycling.  Use results/understanding to investigate different molecules 
 

•Tortuosity  
•PFG method will be applied to cycled/discharged samples to explore how SEI growth 
affects tortuosity (and rate)  
•Investigation of Si/conducting polymer samples prepared by Gao Liu (LBNL) – 
particularly to investigate conductivity in pores and binder – are planned  
 
•High Voltage spinels  
•Separate equilibrium from non-equilibrium processes in NMR  
•Initiate work on SEI of HV spinels.  Combine with graphite carbon for full cell studies. 
•Extend method to other high voltage systems.   
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Collaboration and Coordination with Other 
Institutions   

• Dupont CR&D (E. McCord and W. Holstein)  
– Investigation of electrolyte stability and SEI formation  

• Brett Lucht (Rhode Island) 
– Investigation of SEI  

• Jordi Cabana (UI Chicago)  
– synthesis, XRD of high voltage spinels  

• Stanley Whittingham (Binghamton)  
– magnetism of spinels  

• Stephan Hoffman (Cambridge) 
– Si nanostructures  

• Andrew Morris (Cambridge) 
–  DFT structures of LixSi   

• Guoying Chen (LBNL) 
– synthesis of high voltage spinesl  
 
 

• N/A – not reviewed last year  
 

Responses to Previous Year Reviewers’ 
Comments 
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Technical Back-Up Slides 
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Publications and Presentations 
• “Structure of aluminum fluoride coated Li[Li1/9Ni1/3Mn5/9]O2  cathodes for secondary lithium-ion batteries”, K.J. 

Rosina, M. Jiang, D. Zeng, E. Salager, A.S. Best, C.P. Grey, J. Mat. Chem., 22, 20602-20610, (2012). 
• “Scanning x-ray fluorescence imaging study of lithium insertion into copper based oxysulfides for Li-ion batteries”, 

R. Robert, D. Zeng, A. Lanzirotti, P. Adamson, S.J. Clarke, and C.P. Grey, Chem. Mat., 24, 2684-2691, (2012).  
• “Sidorenkite (Na3MnPO4CO3): A new intercalation cathode material for Na-ion batteries”, H. Chen, Q. Hao, O. 

Zivkovic, G. Hautier, L.-S. Du, Y. T, Y.-Y. Hu, X. Ma, C.P. Grey, and G. Ceder, Chem. Mat., 25, 2777-2786 (2013). 
• “Study of the transition metal ordering in layered NaxNix/2Mn1–x/2O2 (2/3 ≤ x ≤ 1) and consequences of Na/Li 

Exchange”, J. Cabana, N.A. Chernova, J. Xiao, M. Roppolo, K.A. Aldi, M. Stanley Whittingham, and C. P. Grey, 
Inorg. Chem., 52, 8540-8550 (2013). 

• “Paramagnetic electrodes and bulk magnetic susceptibility effects in the in situ NMR studies of batteries: 
Application to Li1.08Mn1.92O4 spinels”, L. Zhou, M. Leskes, A.J. Ilott, N.M. Trease, and C.P. Grey, J. Mag. Res., 
234, 44-57 (2013). 

• “Lithiation of silicon via lithium Zintl-defect complexes from first principles”, A.J. Morris, R.J. Needs, E. Salager, 
C.P. Grey, C.J. Pickard, Phys. Rev. B, 87, 174108-1 – 174108-4, (2013). 

• “Revealing the kinetics of key LixSi phase transformations in nano-structured Si based Li-ion batteries via in situ 
NMR”, K. Ogata, E. Salager, C. J. Kerr, A. J. Morris, A. Fraser, C. Ducati, S. Hofmann, C. P. Grey, Nature 
Communications, 5:3217 | DOI: 10.1038/ncomms4217 (2014).   
 
 “Following Function in Real Time: New NMR and MRI Methods for Studying Structure and Dynamics in Batteries and 

Supercapacitors”  
Talk (or related talk) given at the following meetings in 2013: 
iNano Opening, Plenary Talk, Billund, January; Chemistry Department, ENS Lyon, January 
RS, Theo Murphy International Scientific Meeting, 28 & 29 January; Chemistry Department, University of Wisconsin, February; 
IBA2013, Research Award Address, Barcelona, March; ACS, New Orleans, March 
54th ENC, Laukien Award Address, Asilomar, CA, April; ISMAR 2013, Rio de Janeiro, Brazil, May 
University of Basel, Basel, May; SSI-19 Conference, Kyoto, June 
RSC MC11, Warwick University, July; ICMRM, Cambridge, August 
Electrochem2013, Southampton University, Southampton, September; RSC ISACS12, Cambridge, September 
8th Alpine Meeting on Solid State NMR, Chamonix, September; LG Chemicals, Daejeon, Korea, October 
Korea Basic Science Institute, Daegu, Korea, October; Department of Energy Science, Sungkyunkwan University, Korea, October 
Samsung Advanced Institute of Technology (SAIT), Seoul, Korea, October 
Institute of Energy & Climate Research, Forschungszentrum Juelich, Germany, November  
MRS, December (2013). 
  



• Susceptibility effects and dipolar 
broadening are significant for paramagnetic 
samples  
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Challenges for In-situ NMR: 
Paramagnetic Cathode Materials 
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In-situ 7Li NMR – Ordered vs Disordered 

Ordered Disordered 

Increased Li mobility 
Solid solution Limited range of 

Solid solution 

Intensity 
T2 corrected 

Intensity 
T2 corrected 

hysteresis 
reversible 

More 2-
phase like 
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A900 

Chunjoong Kim, Jordi Cabana 
In-situ XRD: Ordered vs. Disordered  
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•  Samples are saturated with electrolyte solvent (DMC) and diffusion is measured 
along the z-axis and length of sample 

Silicon 
Composite 
Electrode 

Substrate 

Surface of  pristine electrode 
prior to saturation with DMC 

Quantify tortuosity using Do=τDeff 

PFG NMR Experiments Si and LiCoO2 
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•  Apparent tortuosity 
given by  
τ = Do/Deff = 1.3  
(room temperature) 




