Enabling Materials for High Temperature Electronics

Andrew A. Wereszczak* and Zhenxian Liang[§] * Materials Science & Technology § Electrical & Electronics Systems Research Oak Ridge National Laboratory Oak Ridge, TN 37831

2014 Vehicle Technologies Annual Merit Review and Peer Evaluation Meeting Washington, DC 19 June 2014

Project ID: pm054

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

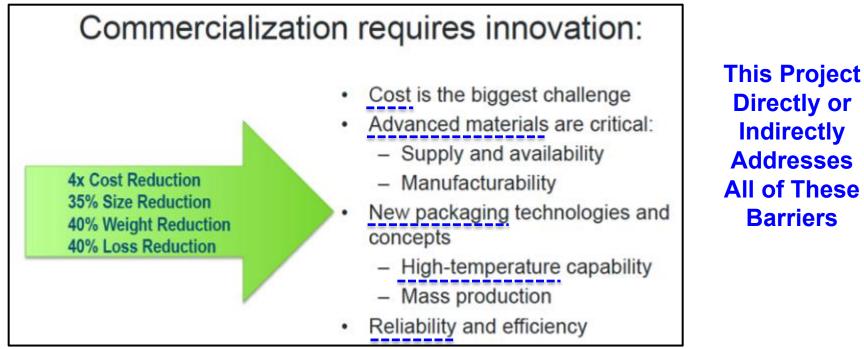
- Started Q4-FY13
- Completion FY16
- 23% Complete

Budget

- Total project funding
 - 100% DOE
 - 50/50: DOE OVT Propulsion Materials Program + DOE OVT Advanced Power Electronics and Electric Motor Program
- FY13: \$50k
- FY14: \$170k
- * OVT Multi-Year Program Plan 2011-2015
- # Enabled by using materials having 200°C-capability or increased thermal conductivity or both

Barriers*

- 1. Enabling materials needed for wide bandgap (WBG) exploitation
- 2. Reliability and lifetime of power electronic modules (PEMs) degrade rapidly with increased temperature[#]
- 3. PEMs need improved thermal management[#] for higher temps
- 4. New cooling paradigms[#] would enable higher PEM power densities without compromise to reliability


Partners/Collaborations

- Indium Corporation
- Heraeus and Henkel
- General Metal Finishing
- Interface Solutions, DuPont, and Martin Marietta
 - NREL

Relevance/Objectives

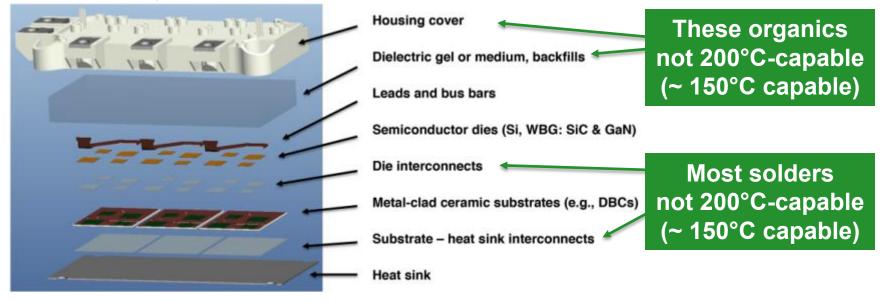
President Obama announced EV Everywhere Challenge on 07 March 2012; produce affordable and convenient electric vehicles for the average family by 2022

Source: S. Rogers, "APEEM Overview and Meeting Expectations," APEEM FY14 Kickoff Meeting, Oak Ridge, TN, 05 Nov 2013.

Addresses All of These

Milestones

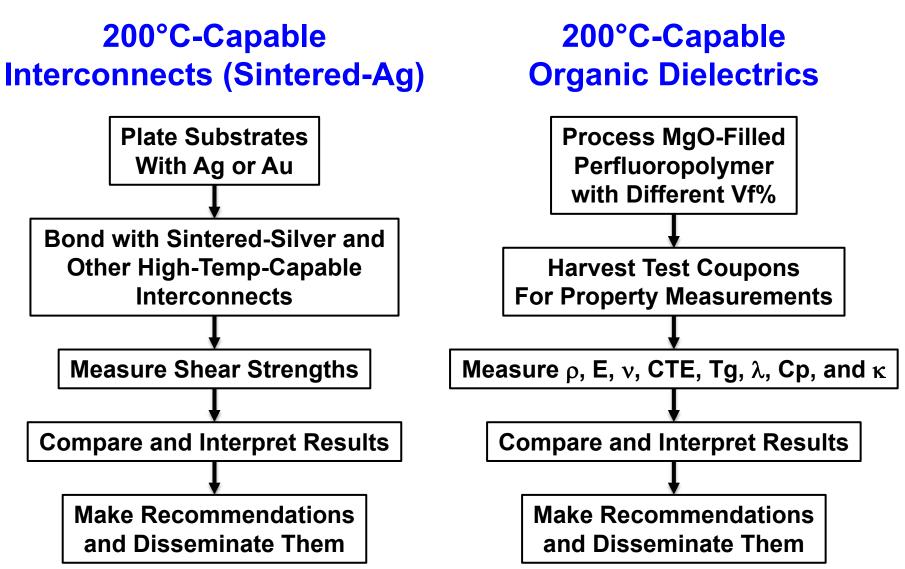
- FY13-Q4. New start. Defined FY14 test matrix for sintered-Ag interconnect and identified 200°C-capable polymer dielectric. [Achieved]
- FY14-Q1. Demonstrate efficacy of bonding WBG die to coppercladded substrate using silver sintering interconnection. [Achieved]
- FY14-Q2. Measure thermal properties of high-temperature-capable perfluoropolymers for PEM use. [On track]
- FY14-Q3. Compare shear strength of Ag- and Au-plating on DBC substrates. [On track]
- FY14-Q4. Submit article to conference on silver sintering. [Achieved – paper submitted to IMAPS HiTEC 2014]



Technical Approach (1 of 2): Address High-Temperature <u>In</u>capability

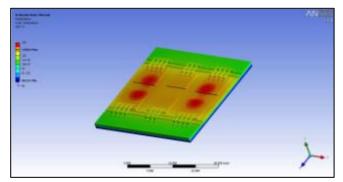
Contemporary PE devices cannot operate at 200°C because:

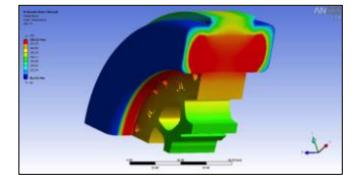
- Conventional interconnect materials (solder) in non-equilibrium at 200°C
- Most organics/polymers not stable for long times at 200°C


Example of a single-sided PE device

- Goal: develop material technologies that enable a 200°C-capable, low-cost, and reliable electronic package with at least 15-year-life
- Approach: use innovative materials science AND engineering

Technical Approach (2 of 2): Two Parallel Efforts

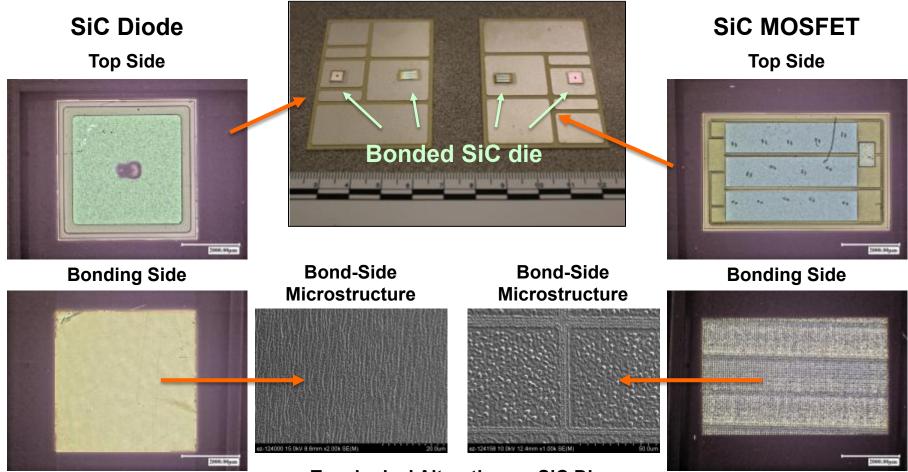



Technical Accomplishments (1 of 6)

Overview of FY14's Accomplishments So Far:

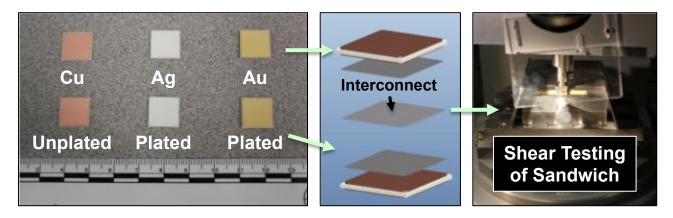
- Successfully sintered-Ag-bonded SiC (WBG) die to substrates
- Determining the mechanical strength of sintered-Ag bonds as a function of several parameters
- Assessing the mechanical reliability of sintered-Ag bonds
- Establishing a method to process 200š7 -capable thermallyconductive dielectric and characterized its properties and microstructure.

High Temperatures Must Be Managed in Power Electronic (left) and Electric Motor (right) Components



Technical Accomplishments (2 of 6)

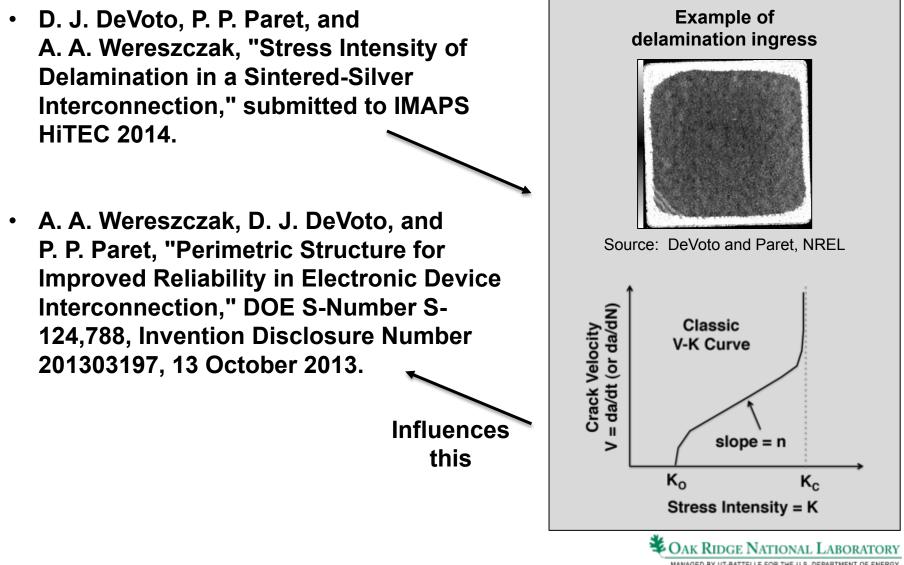
Demonstrated Efficacy of Sintered-Ag Bonding with SiC (WBG) Die


Topological Alteration on SiC Die Would Be Beneficial ...

Technical Accomplishments (3 of 6)

Improved Understanding of Sintered-Ag Bonding Needed

"DBC Substrate Sandwich" Specimens for Plating and Interconnect Evaluations

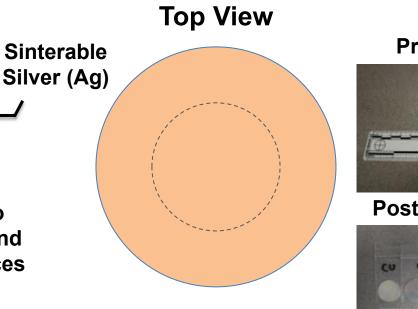


- Dependent parameter: shear strength
- Independent parameters:
 - Ag versus Au plating
 - Comparison of sinterable-Ag pastes
 - Sintering pressure
 - Sulfided/oxidized surfaces versus clean surfaces

Technical Accomplishments (4 of 6)

Collaboration with NREL Underway Involving Interconnect Reliability

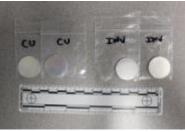
Technical Accomplishments (5 of 6)


Thermal Cycling, Residual Stresses, Stress Intensities, and Delamination (NREL Collaboration)

Side View

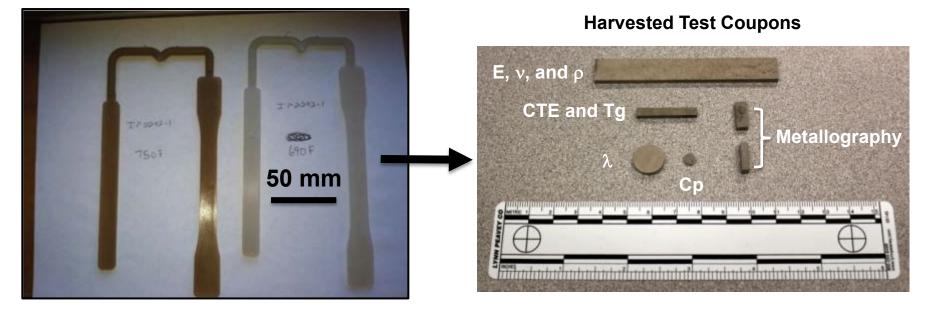
Copper (Ag-plated)

Invar (Ag-plated)


- Invar: model material used to simulate low CTE of silicon and substrates in electronic devices
- Vary diameter of bond layer
- Vary residual stress
 - Copper-copper disk pair
 - Invar-invar disk pair
 - Copper-invar disk pair
- Neutron diffraction to quantify residual stress in sintered-Ag bond layer (?)
- Thermal cycling & track delamination response

Pre-Plating

Post-Ag-Plating


Nominal Properties:

Material	CTE (ppm/°C)	E (GPa)	
Copper	17	115	
Sintered Ag	20	15-60	
Invar	1.3 - 2.7	145	

Technical Accomplishments (6 of 6)

MgO-Filled (High-Temperature) Perfluoropolymer

IP2292		% by weight in formulation		
Sample #	Description	RS1174-OR1 Dupont ECA 3000	CH1302-OR1 MgO	CH972 vinyltrimethoxy silane
IP2292-1	Control	100	0	
IP2292-2	60% MgO by weight	40	60	
IP2292-3	90% of 60% MgO by weight	46	54	
IP2292-4	80% of 60% MgO by weight	52	48	
IP2292-5	60% MgO by weight plus silane	39.5	60	0.5
IP2292-6	90% of 60% MgO by weight plus silane	45.5	54	0.5
IP2292-7	80% of 60% MgO by weight plus silane	51.5	48	0.5

Responses to Previous Year Reviewer Comments

Project not reviewed last year (Because it started in FY13 – Q4)

Collaborations / Interactions

- Indium Corporation: Established manufacturer of electronic interconnect materials
- Interface Solutions: Composite fabricator
- DuPont and Martin Marietta: Manufacturers of high-tempcapable polymers and MgO, respectively
- National Renewable Energy Laboratory: Collaboration
 involving reliability testing and analysis of interconnects
- Heraeus and Henkel: Manufacturers of sinterable-silvers
- General Metal Finishing: Plater

Proposed Future Work

- Complete characterization of 200°C-capable dielectric
- Complete evaluation of effects of plating material on strength of 200°C-capable sintered-Ag interconnect
- For FY15
 - Thermal cycling of high-temp bonded interfaces (with NREL)
 - Develop performance predictive model (with NREL)
- Future concepts beyond FY15
 - 200°C-capable thermal interface materials
 - Improved ferrite ceramics (for inductors); improve power density and loss characteristics through improved or refined microstructural ceramic engineering

Source: S. Rogers, "APEEM Overview and Meeting Expectations," APEEM FY14 Kickoff Meeting, Oak Ridge, TN, 05 Nov 2013.

Remaining Challenges and Barriers

- Will good shear strength manifest itself into good thermal cycling reliability too?
- Can a classical fatigue criterion enable designs of sintered-Ag bond shapes and sizes so delamination does not occur (i.e., so K < Ko)?
- In future years:
 - Can 200°C-capable, thermally-conductive dielectric materials be transitioned into thermal interface materials?
 - Can improved and refined ceramic microstructural engineering be inexpensively employed with ferrite ceramics so to improve their loss and power density characteristics?

Summary

- Relevance:
 - Addresses cost, need for higher-temperature-capable materials, new packaging technologies, and reliability and efficiency
 - Addresses major materials needs for the EV/HV sectors
- <u>Approach/Strategy</u>: 200°C-capable interconnects and dielectrics for power electronics
- <u>Accomplishments</u>: New materials, patent applications and invention disclosures, and published articles
- <u>Collaborations:</u> Industry suppliers and end-users
- Proposed Future Work:
 - Develop model for interconnect design and reliability
 - Develop new thermal interface materials and improve ferrite ceramics for inductors (if new resources permit)

