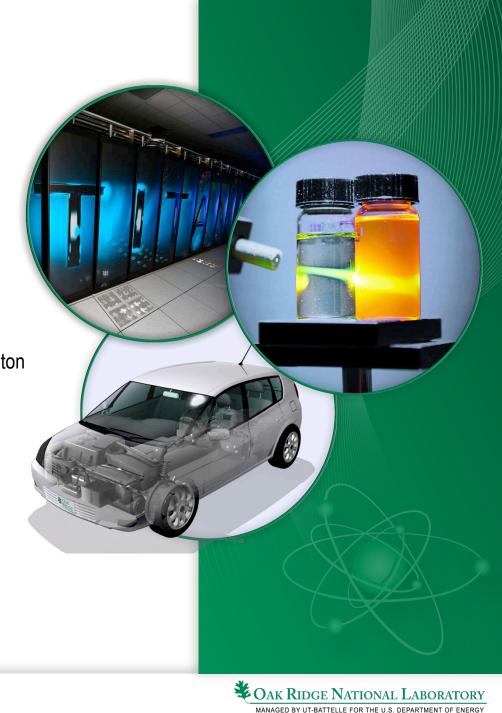
Emissions Control for Lean Gasoline Engines


Jim Parks (PI), Todd Toops, Josh Pihl, Vitaly Prikhodko

Oak Ridge National Laboratory

Sponsors: Gurpreet Singh, Ken Howden, and Leo Breton Advanced Combustion Engines Program U.S. Department of Energy

ACE033 June 19, 2014

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

<u>Timeline</u>

- Project began in FY12
- Project Ongoing

Barriers Addressed

- Barriers listed in VT Program Multi-Year Program Plan 2011-2015:
 - 2.3.1B: Lack of cost-effective emission control
 - 2.3.1C: Lack of modeling capability for combustion and emission control
 - 2.3.1.D: Durability

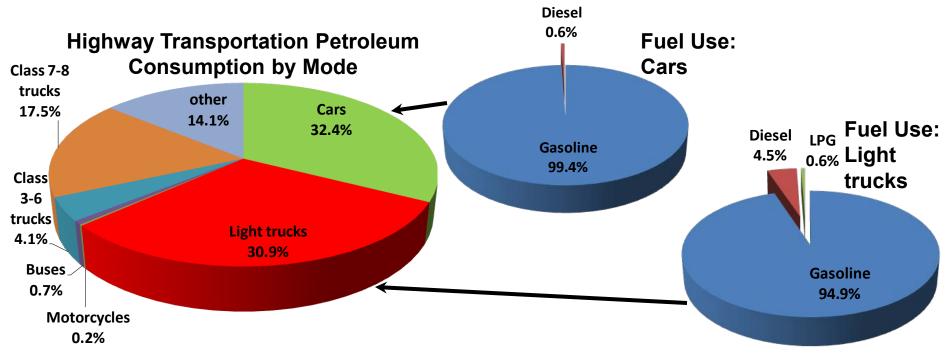
<u>Budget</u>

- FY14: \$400k
- FY13: \$500k
- FY12: \$400k

Collaborators & Partners

- Umicore
- General Motors
- University of South Carolina
- University of Wisconsin
- Cross-Cut Lean Exhaust Emissions Reduction Simulations (CLEERS)
- PNNL (platform for PM studies)

Objectives and Relevance


Enabling lean-gasoline vehicles to meet emissions regulations will achieve significant reduction in petroleum use

- <u>Objective:</u>
 - Demonstrate technical path to emission compliance that would allow the implementation of lean gasoline vehicles in the U.S. market.
 - Lean vehicles offer 5–15% increased efficiency over stoichiometric-operated gasoline vehicles.
 - Compliance: U.S. EPA Tier 3 standard (original goal Tier 2 Bin 2)
 - Investigate strategies to achieve cost-effective compliance
 - minimize precious metal content while maximizing fuel economy
- <u>Relevance:</u>
 - U.S. passenger car fleet is dominated by gasoline-fueled vehicles.
 - Enabling introduction of more efficient lean gasoline engines can provide significant reductions in overall petroleum use
 - thereby lowering dependence on foreign oil and reducing greenhouse gases

Relevance: small improvements in gasoline fuel economy <u>significantly</u> decreases fuel consumption

- US car and light-truck fleet dominated by gasoline engines
- 10% fuel economy benefit from base case of 23.0/17.1 mpg has significant impact
 - Saves 12.8 billion gallons gasoline annually
 - Or, save \$47 billion/year (at \$3.68/gallon 2012 US price)
- HOWEVER...emissions compliance needed!!!

References: Transportation Energy Data Book, Ed. 31 (2010 petroleum/fuel use data); www.eia.gov (2012 US gasoline price)

Lean gasoline

vehicles can decrease

US gasoline

consumption by

~12 billion gal/year

Milestones and Project Goals

Complete Complete								
Complete •	FY2014, Q1: Measure transient NH ₃ formed from TWC in an TWC+SCR approach on engine Further studies ongoing							
Complete •	FY2014, Q2: Characterize performance of Umicore prototype TWC catalysts for NH ₃ production Further studies ongoing							
On Track •	On Track • FY2014, Q3: Present results at CLEERS Workshop							
On Track •	On Track • FY2014, Q4: Define the potential impact of NOx storage components added to TWC formulations on NH ₃ production for downstream NOx reduction over SCR catalysts							

In addition to milestones, a set of project goals has been adopted to ensure progression towards goal of low-cost emissions control solution for fuel efficient lean-burn gasoline vehicles

	FY13	FY14	FY15	FY16	FY17	5-year Average (\$/troy oz.)
Fuel economy gain over	7%	10%	10%	12%	15%	Platinum \$ 1,504/troy oz. 1.0
stoichiometric						Palladium \$ 463 /troy oz. 0.3
Total emissions control	8 7	7	6	5	4	Rhodium \$ 3,582/troy oz. 2.4
devices Pt* (g/L _{engine})			5	5		Gold \$ 989 /troy oz. 0.7

* - will use Pt equivalent to account for different costs of Pt, Pd and Rh; 5-year average value fixed at beginning of project

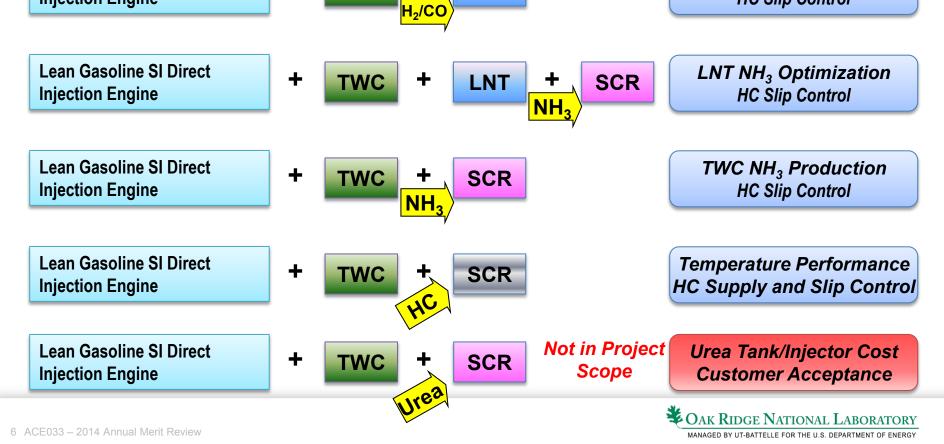
Approach: Emission Control Options and Critical Issues Related to Cost and Performance

• Goal: Enable Tier 3 (Tier 2 Bin 2) Emission Compliance for Lean Gasoline Engine Vehicle

TWC

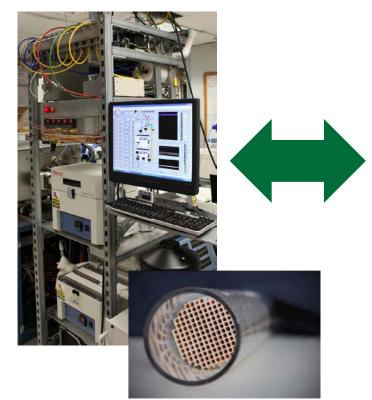
- Focus on NOx, CO, HC (PM may be issue for DI engines, but outside of project scope; new project starting)
- Technologies: TWC = Three-Way Catalyst
 LNT = Lean NOx Trap
 SCR = Selective Catalytic Reduction

┿


Lean Gasoline SI Direct

Injection Engine

Specific Key Issues:


Cost, Durability, Fuel Penalty, Operating Temp.,+...

> LNT Capacity and Cost HC Slip Control

LNT

Approach: Studies on Bench Reactor and Engine

- Studies on Bench Flow Reactor
 - Commercial, prototype, and model catalysts
 - Study of chemistry and mechanisms under simulated exhaust conditions
 - Two reactors simulate two catalysts in close coupled and underfloor positions

- Studies on BMW 120i lean gasoline engine platform with Drivven open controller
 - Realistic exhaust conditions
 - Full control of rich AFR for catalyst regeneration and reductant production/control
 - Scope does not include lean combustion optimization

Collaborations and Partners

- Umicore
 - guidance (via monthly teleconferences) and catalysts for studies (both commercial and prototype formulations)
- GM
 - guidance and advice on lean gasoline systems via monthly teleconferences
- University of South Carolina (Michael Amiridis)
- University of Wisconsin (Chris Rutland)
 - Monthly teleconferences focused on sharing data for modeling of lean emission control systems (with Ph.D. candidate Jian Gong)
- CLEERS
 - Share results/data and identify research needs
- PNNL
 - Engine platform used for GDI PM study (see PNNL talk ACE023)

Related DOE VTO Projects of note: ACE084; Thomas Wallner, ANL: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems FT007; Todd Toops, ORNL: Fuel Effects on Emissions Control Technologies

Pacific Northwest

ABORATORY

YOF

UNIVERSI

Automotive Catalysts

Response to FY13 reviewers' comments

• Approach:

- <u>Comments:</u> "using both bench and engine testing is a good approach, but should try to draw a better correlation between the two."... "including a catalyst supplier in this work is highly desirable to make sure the newest technologies are characterized."..." a well-balanced approach between the reactor and dyno work"..." the engine and laboratory bench studies are complementary to each other"
- <u>Response</u>: positive comments, bench and engine result correlations are developing as results to compare are obtained
- Technical Accomplishments:
 - <u>Comments:</u> "system architectural level should include FTP testing and aging effects to"..." at some point PM should also be included because of its regulatory requirement"..." a tunable ammonia generator for passive SCR and noted that TWC was shown to be effective"..." the laboratory-scale results

FY2013 AMR Review (5 Reviewers)

[scores: 1 (min) to 4 (max)]

Weighted Average	3.48
Approach	3.80
Tech Accomplishments	3.40
Collaboration	3.40
Future Research	3.20

demonstrated more than 99% NOx conversion without using urea"..." great bench data so far and was looking forward to results from the engine"

Notable Comment	Response				
Liked bench+engine approach but want more correlation between them	Correlations now possible with both bench and engine results; will maintain such comparative analysis				
Interest in transient/FTP studies and aging effects	Working that direction; modeling/analysis currently links to FTPs; more transient and aging experiments planned				
Interest in PM emission studies	Resources limit ability to address; platform is serving community for PM studies				

Summary of Technical Accomplishments

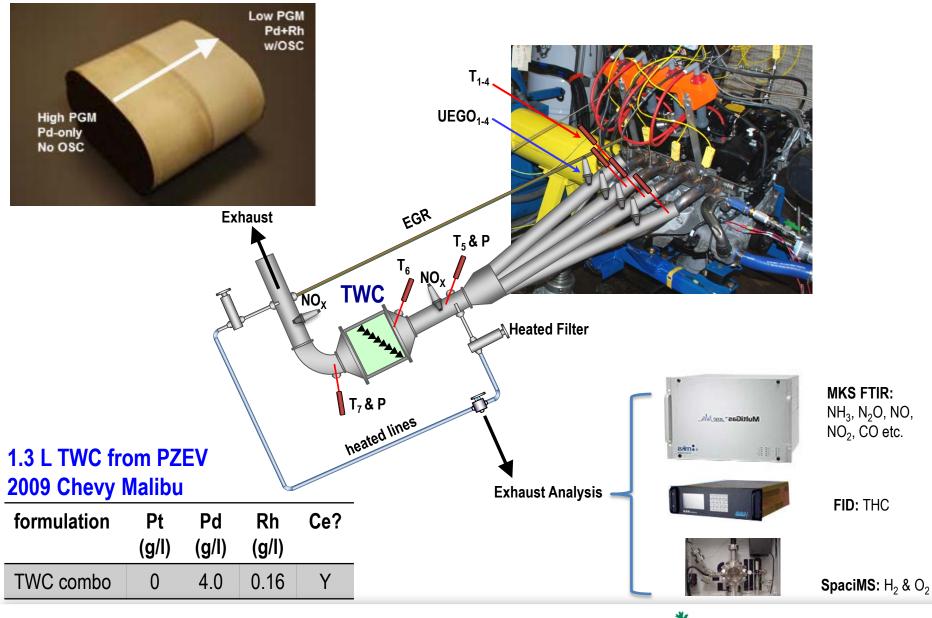
Measured combustion effects on NH₃ production from TWC on engine

- Results consistent with bench flow reactor studies
- Fuel penalty for NH₃ production measured
- Engine out NOx level a critical parameter for success (the higher the better)
- H_2 measurements made excess H_2 at TWC indicates potential for more NH_3 exists

Demonstrated >99% NOx Reduction Efficiency on engine with TWC+SCR

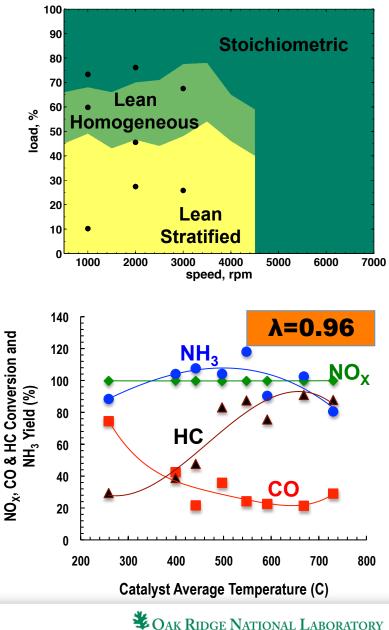
- Results consistent with bench flow reactor studies in general
- NOx "puff" at transitions significant (relative to Tier 3 standard); investigations of cause ongoing

Analyzed potential for better fuel economy with transient drive cycle

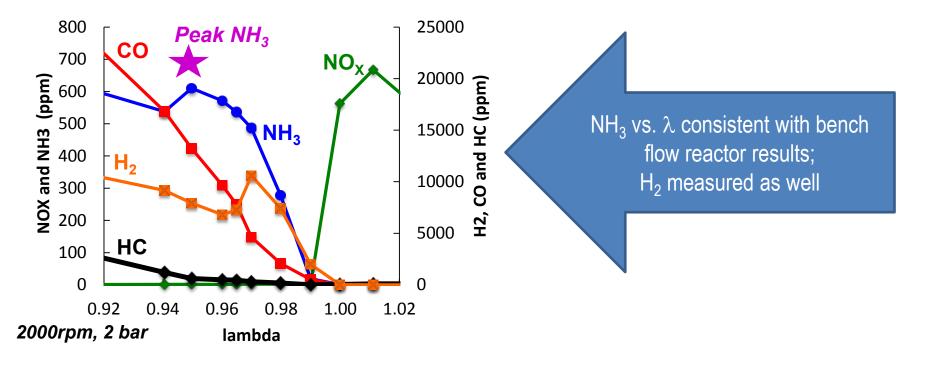

– Direction toward project goals underline importance of engine-based studies

Characterized prototype TWC matrix supplied by Umicore (ongoing)

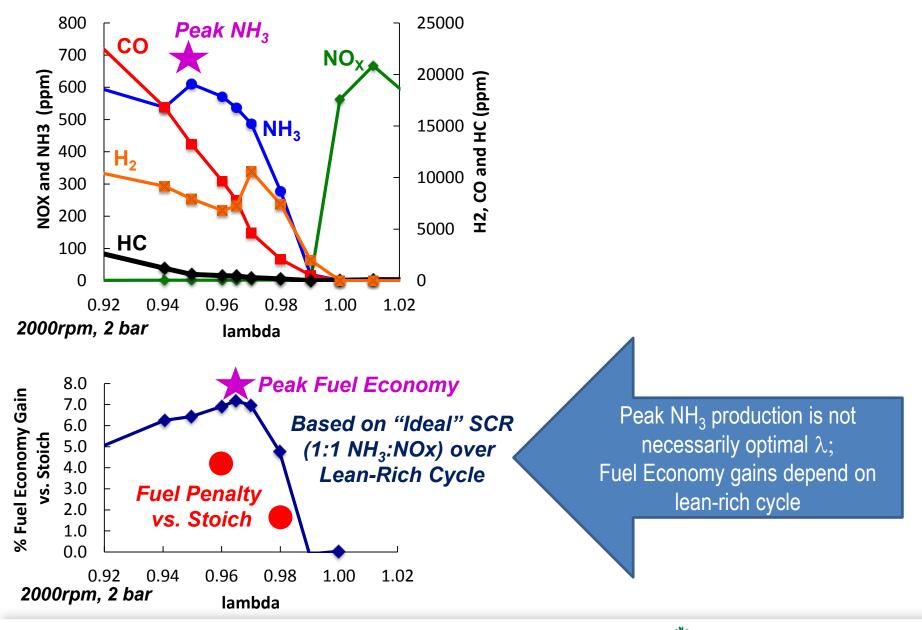
- Goals to improve catalyst design for best fuel economy gain
- Of particular interest: addition of NOx storage component to TWC
- First set of results obtained; research ongoing


Ammonia generation over TWC for passive SCR NO_{x} control on lean BMW 1-series engine (N43B20)

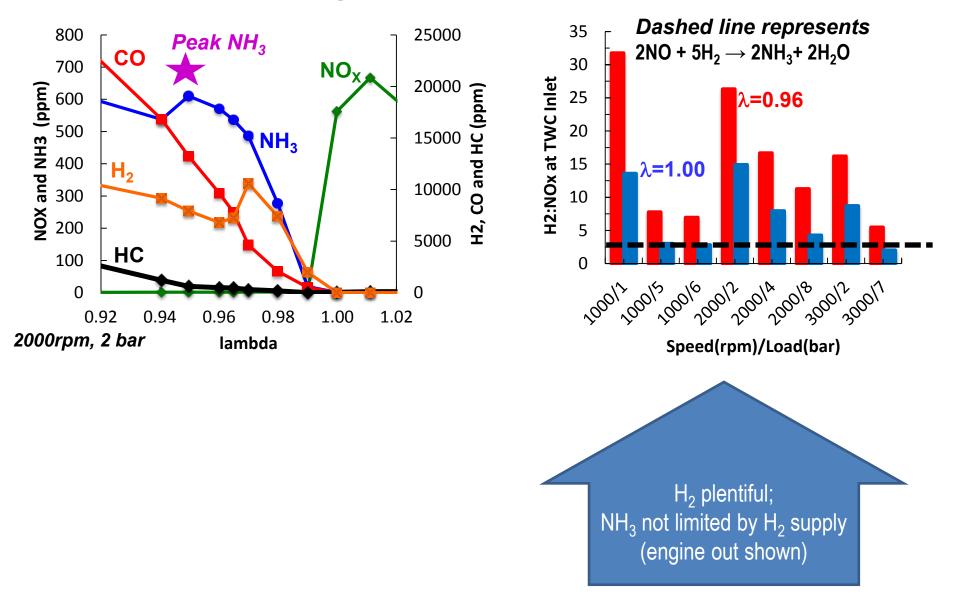
COAK RIDGE NATIONAL LABORATORY

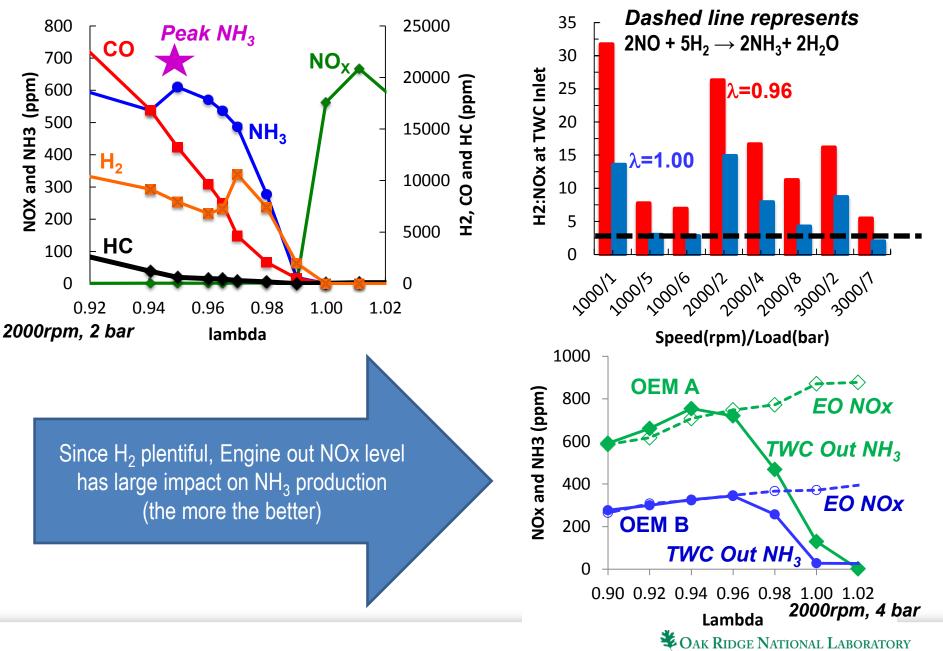

High NH₃ yield is achieved at a wide range of engine conditions for λ =0.96

Speed	Load	OEM Mode
1000 rpm	1 bar	Lean Stratified
1000 rpm	5 bar	Lean Homogeneous
1000 rpm	6 bar	Stoichiometric
2000 rpm	2 bar	Lean Stratified
2000 rpm	4 bar	Lean Stratified
2000 rpm	6 bar	Lean Homogeneous
2000 rpm	8 bar	Stoichiometric
3000 rpm	2 bar	Lean Stratified
3000 rpm	7 bar	Lean Homogeneous

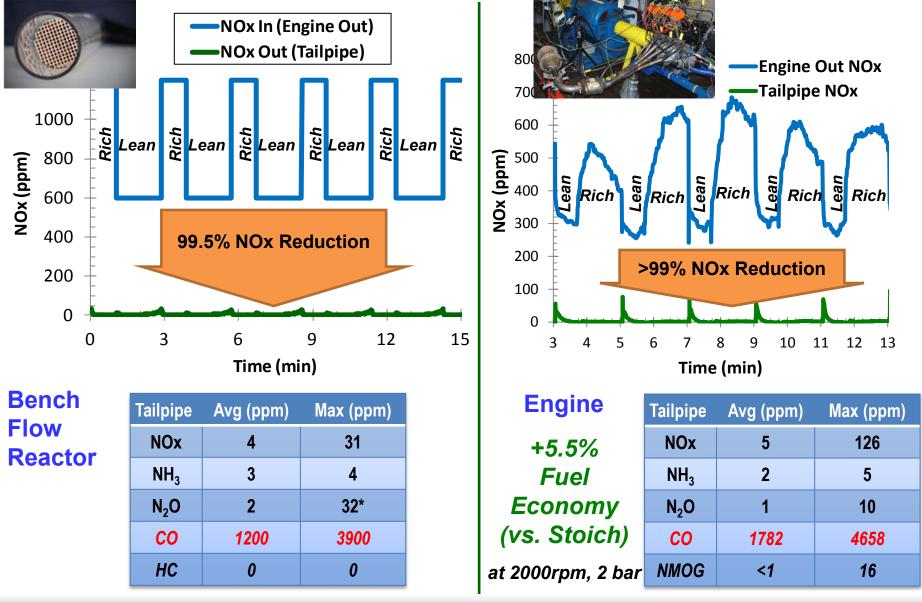


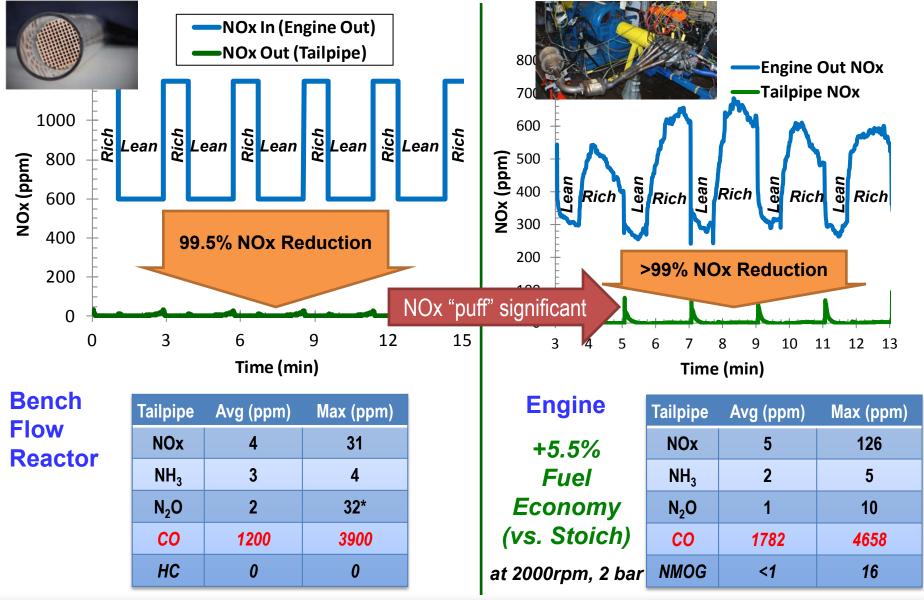
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY


- High NH₃ yield is achieved at a wide range of temperatures and space velocities at λ=0.96
- At high temperatures, O₂ is selectively reacting with HC compared to CO

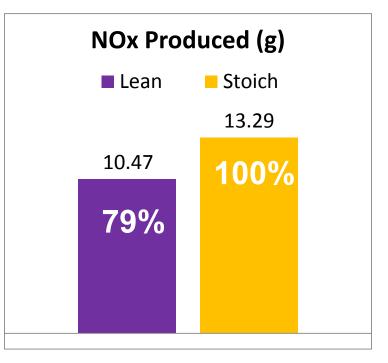


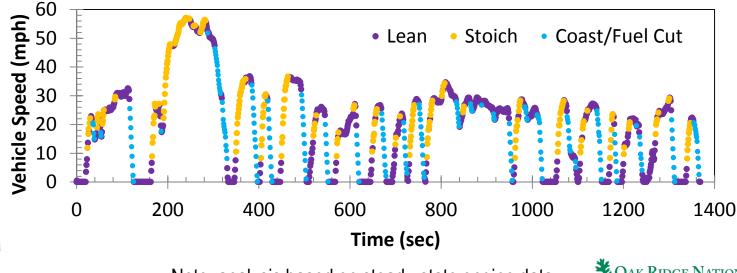
OAK RIDGE NATIONAL LABORATORY




MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Bench reactor and engine-based passive-NH₃ SCR (TWC+SCR) experiments show consistent results


Bench reactor and engine-based passive-NH₃ SCR (TWC+SCR) experiments show consistent results

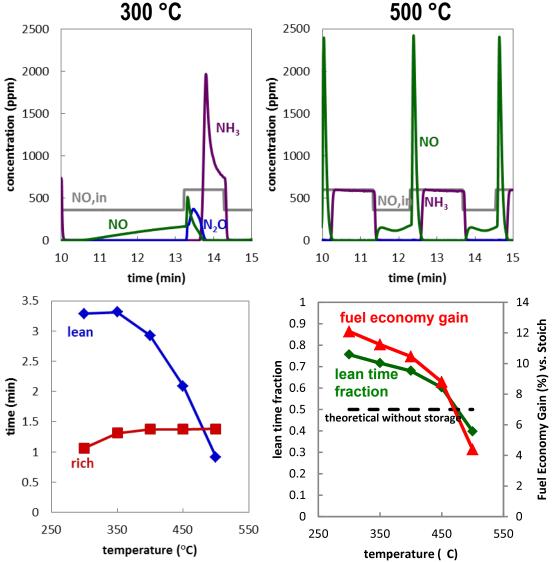


Transient drive cycle may enable better fuel economy gain

- Acceleration during transient drive cycle creates opportunity for high Engine Out NOx, and thereby, high TWC Out NH₃
- Modeled results shown based on steady-state engine map and FTP drive cycle
- Over entire cycle, more NOx created during stoichiometric operation; thus, efficient NOx to NH₃ catalysis can enable greater vehicle fuel economy
- Estimated transient fuel economy gain = 10.8% (vs. ~5-6% observed for steady-state operation)

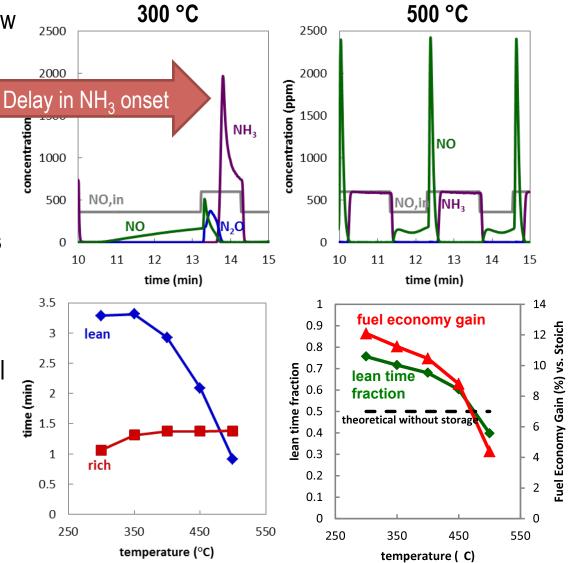
Note: analysis based on steady-state engine data

Studying matrix of TWC prototype formulations (from Umicore)

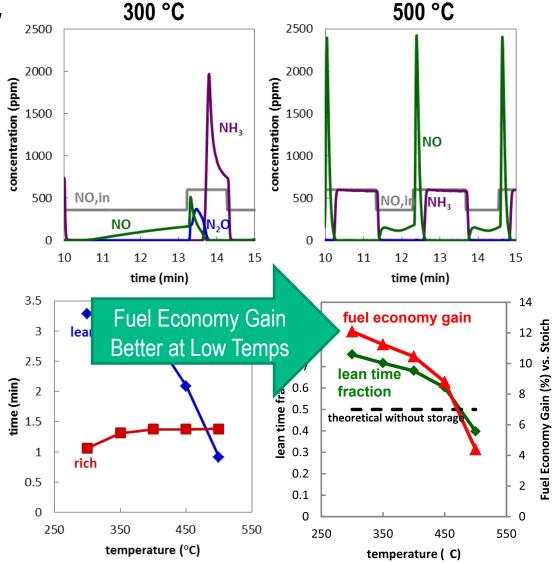

- New matrix of samples furthers FY13 focus of Pd with and without OSC
- NOx Storage Component (NSC)

sample ID	description	Pt g/l	Pd g/l	Rh g/l	OSC	NSC
ORNL-2	Pd + Rh	0	6.36	0.14	Ν	Ν
ORNL-6	Pd	0	6.50	0	Ν	Ν
ORNL-5	Pd + OSC high	0	6.50	0	Н	Ν
ORNL-4	Pd + OSC med	0	4.06	0	М	Ν
ORNL-3	Pd + OSC low	0	1.41	0	L	Ν
ORNL-1	PGM + NSC	2.47	4.17	0.05	Y	Y

TWC NOx storage component improves lean time and fuel economy (but not at high temperatures)

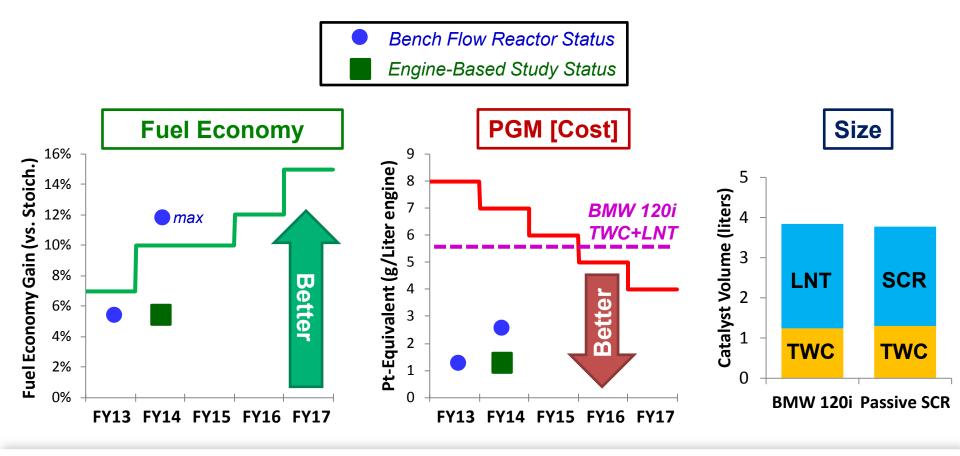

- Cycled TWC w/NOx storage on flow reactor in synthetic exhaust modeled after BMW 120i engine
 - feedback controlled cycles based on real time integration
 - NH₃ produced during rich = NOx slipped over entire cycle
 - theoretically operates equal times lean and rich w/o storage
- NOx storage component enables longer lean operating times at low TWC temperatures (and better fuel economy):
 - storage/reduction of lean NOx allows longer lean times
 - NH₃ produced from stored NOx allows shorter rich times
 - Delay in NH₃ onset a concern

21 ACE033 – 2014 Annual Merit Review


TWC NOx storage component improves lean time and fuel economy (but not at high temperatures)

- Cycled TWC w/NOx storage on flow reactor in synthetic exhaust modeled after BMW 120i engine
 - feedback controlled cycles based on real time integration
 - NH₃ produced during rich = NOx slipped over entire cycle
 - theoretically operates equal times lean and rich w/o storage
- NOx storage component enables longer lean operating times at low TWC temperatures (and better fuel economy):
 - storage/reduction of lean NOx allows longer lean times
 - NH₃ produced from stored NOx allows shorter rich times
 - Delay in NH₃ onset a concern

TWC NOx storage component improves lean time and fuel economy (but not at high temperatures)


- Cycled TWC w/NOx storage on flow reactor in synthetic exhaust modeled after BMW 120i engine
 - feedback controlled cycles based on real time integration
 - NH₃ produced during rich = NOx slipped over entire cycle
 - theoretically operates equal times lean and rich w/o storage
- NOx storage component enables longer lean operating times at low TWC temperatures (and better fuel economy):
 - storage/reduction of lean NOx allows longer lean times
 - NH₃ produced from stored NOx allows shorter rich times
 - Delay in NH₃ onset a concern

23 ACE033 - 2014 Annual Merit Review

Remaining Challenges

- Improve system level fuel economy (reduce NH₃ production fuel penalty)
- Optimize catalyst performance during transients and rich-lean transitions
- Characterize and assess effect of S and aging on TWC NH₃ production

Future Work: Addressing Remaining <u>Challenges</u>

- <u>Improve system level fuel economy (reduce NH₃ production fuel penalty)</u>
 - Study two approaches identified in FY14 for improved fuel economy:
 - (1) utilization of acceleration load/speed during transient operation for higher NH₃ production
 - (2) addition of NOx storage component to TWC for increasing lean:rich ratio (extend bench flow reactor studies further and onto engine)
- Optimize catalyst performance during transients and rich-lean transitions
 - Further investigate NOx emissions during rich-lean transitions on engine
 - Predict effects of transient operation on drive cycle fuel economy gains
- <u>Characterize and assess effect of S and aging on TWC NH₃ production</u>
 - Add S to TWC formulations to determine effect of S on NH₃ production
 - Perform rapid thermal aging of TWC formulations and determine effect on $\rm NH_3$ production and CO and HC slip

Summary

- <u>Relevance</u>:
 - Enabling lean gasoline vehicles will significantly impact US petroleum use

• <u>Approach</u>:

- Evaluate catalyst formulations and system geometries on bench flow reactor for cost-effective emissions control (focus on non-urea systems)
- Study fuel penalty and realistic performance on lean gasoline engine dynamometer research platform

<u>Collaborations</u>:

- Industry: GM and catalyst supplier Umicore
- Universities: University of South Carolina and the University of Wisconsin
- National Labs: PNNL (platform supported PM study)

<u>Technical Accomplishments</u>:

- Demonstrated >99% NOx reduction efficiency with TWC+SCR approach on engine; results consistent with bench flow reactor results obtained previously
- Defined key emissions on the engine platform including: NOx pulse at lean-rich transitions, H₂ during rich operation, effect of engine out NOx on NH₃ supply-demand over lean-rich cycle
- Characterized prototype TWC with NOx storage component (further studies ongoing)
- Future Work:
 - Improve system level fuel economy (reduce NH₃ production fuel penalty)
 - Study effects of sulfur and aging on NH₃ production and CO/HC oxidation

