

Development of Nanofluids for Cooling Power Electronics for Hybrid Electric Vehicles

Presenter: E. V. Timofeeva,

D. Singh, W. Yu, and D. M. France

Project ID: VSS112

Sponsored by L. Slezak (Vehicle System Optimization)

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start FY11
- Project end FY14
- 90% complete

Barriers

- ⇒ Development of effective, affordable nanofluid
- ⇒ High viscosity, low suspension stability
- \Rightarrow System clogging, erosion of parts
- ⇒ Manufacturability of nanofluid
- \Rightarrow Need for demonstration in conditions similar to HEV
- ⇒ Industrial acceptance of technology

Budget

- FY11 = \$150K (DOE)
- FY12 = \$225 K (DOE)
- FY13 = \$75 K (DOE)
- FY14 = \$350 K (DOE)

Partners

- XG Sciences in development of graphite-based ethylene glycol/water nanofluids
- Dynalene in characterization of heat transfer properties
- PACCAR, Hussmann Corp., and Castrol BP have expressed interest in the technology

State of the art Power Electronics (PE) cooling

TWO cooling systems are currently used for Hybrid Electric Vehicles:

1) higher temperature system for cooling combustion engine

Boost Converter IPM Inverter IPM Inverter Circuitry Inverter Circuitry Inverter Circuitry Inverter Circuitry Inverter Circuitry Inverter Circuitry Inverter Circuitry

2) lower temperature system for cooling power electronics

DOE goals:

- eliminate the lower temperature cooling system, such that all cooling is done with a single higher temperature cooling system
- heavy vehicle cooling improved heat transfer system and weight reduction

Liquid cooling vs. heat sink

Increasing heat fluxes and power loads require efficient and reliable heat dissipation

http://en.wikipedia.org/wiki/Heat_sink

Image Credit: Digital Storm

Further improvements to liquid cooling could be done by using advanced coolant

Nanofluids are liquids with nanometer or submicron size particles dispersed

NANOFLUIDS have <u>proven</u> ability to increase thermal conductivity and heat transfer of liquids

Promising for reducing the size, weight and number of heat exchangers for power electronics cooling

Prior Nanofluid Research

Objectives:

- Conduct assessment of using nanofluids to cool power electronics in HEVs, namely:
 - Use heat transfer analysis to determine the requirement for nanofluid properties that would allow eliminating the low temperature cooling system in HEVs
 - Develop nanofluid formulations with defined set of thermo-physical properties
 - Identify and address engineering issues related to use of nanofluid(s)
 - Experimentally evaluate the heat transfer performance of the developed coolant fluids
- Target power electronics cooling in HEVs, but also address the thermal management issues related to heavy vehicle
- Capitalize on our prior work on nanofluid development, in particular, nanofluid engineering approach

Relevance

- Elimination of a low temperature cooling system
- Reduction in weight and cost
- Other benefits of the technology:
 - Improved efficiency and reliability of power electronics at higher operating conditions
 - Increased lifetimes of the power electronic components

Perform a heat transfer analysis of power electronics cooling package

Determine the magnitude of enhancement in thermal properties of a nanofluid required to eliminate lower temperature cooling system

FY12/FY13

Using nanofluid engineering approach to formulate and optimize suspensions to meet the property requirements defined by thermal analysis

FY13/FY14

Process scale-up & test performance of formulated nanofluid in heat transfer loop

Examine fouling, pumping power, and erosion with nanofluid under actual heat exchanger conditions

FY11

FY12 Accomplishments: Thermal analysis

Conclusions:

- (1) TC ratio of 1.5 increases heat load by ≈50% with thermal interface material (TIM) and by ≈ 70% without TIM
- (2) TC ratio of 2 without TIM is sufficient to eliminate the low temperature system
- (3) TC ratio of 1.5 decreases semi-conductor junction temperature to ≈ 139°C with TIM and to ≈ 135°C without TIM

Accomplishments: Nanofluid development criteria

- Thermal conductivity ratio > 1.5
- Low viscosity => low pumping power
- Low cost
- Suspension stability

Percolation => High thermal conductivity

Nanofluid (nf) is more efficient than base fluid (0) when

 $h_{nf} / h_0 > 1$

W. Yu et al., Appl. Phys. Lett., 96, 2010, 213109

FY 13 Accomplishments: Study of shape effects and surface functionalization of Graphite nano-Platelets (GnP)

FY13 Accomplishments: Thermo-physical properties of GnP in EG/H_2O nanofluid

Conclusions:

- Surface

 functionalization
 partially degrades
 thermal conductivity
 increase (~45% less),
 but dramatically lowers
 viscosity (> 100 times
 less viscous)
- GnP with larger diameter and thickness show higher thermal conductivity increases and viscosities at same concentrations
- Diameter/thickness are critical for viscosity (optimum geometry is needed)

Thermal Conductivity Results

particle concentration, wt. %

Viscosity Results

FY13 Accomplishments: Evaluation of nanofluid in Laminar and Turbulent flow

- Thermal conductivity ratio ~1.8 (variation in concentration can bring it up or down)
- => goal of k_{nf}/k₀ >1.5 is met
- At 75-90% increase in thermal conductivity viscosity increase only ~ 10-40% (vs. 2000% of original GnP suspension)

Conclusion:

Developed nanofluid F-B-GnP in EG/H₂O <u>is beneficial</u> $(h_{nf}/h_0>1)$ in both Laminar and Turbulent flow regimes with ~80% and ~35% improvements in heat transfer coefficients correspondingly Laminar flow $h \propto k$

k – thermal conductivity

Turbulent flow

 $h \propto \rho^{4/5} c_p^{2/5} \mu^{-2/5} k^{3/5} V$ ρ – density

 ρ – density c_p – specific heat μ – viscosity

V – flow velocity

Top level cost analysis

The cost analysis was not possible until the composition of nanofluid coolant was finalized.

- 5wt% of GnP in EG/H2O
- Cost of raw GnP material 1kg ~ \$20
- added cost ~ \$1/L is it a lot?
- Retail antifreeze \$10-30/gal ~\$5/L

GnP additive will add 20% to the cost of the coolant per volume, However savings come on the side of:

- Reduced volume of coolant required (20-50% less)
- Reduced size of the radiator, simpler and cheaper single cooling system (10-50% less)
- Reduced weight of the vehicle (~1-2%)
- Increased fuel efficiency

FY 14 Tasks

Task 1: Optimize the GnP nanofluid preparation procedure for scale-up

Task 2: Prepare nanofluid in quantities sufficient for heat transfer test (~1 gal.)

Task 3: Demonstrate the efficiency of nanofluid coolant in close to real heat exchanger conditions

Task 4: Test fouling, erosion, and pumping power of the nanofluid coolant in close to real heat exchanger conditions

Task 1. Optimize the GnP nanofluid preparation procedure for scale-up

APPROACH:

- Investigated effects of ball milling on thermo-physical properties.
- Studied the effect of GnP additive on properties of commercial Preston[®] 50/50 coolant.

STATUS: TASK CONCLUDED

- Additives in Prestone coolant slightly interfere with our graphitic additives – providing ~7% lower thermal conductivity and ~4% higher viscosity at all other variables being the same.
- Ball-milling decreases viscosity by ~3%, while thermal conductivity is not affected. Therefore ball-milling is a beneficial step for improving the heat transfer.

Task 2. Scale-up of nanofluid preparation in quantities sufficient for heat transfer test

RESULTS :

- Prepared several 0.5L batches of f-GnP nanofluids, revealed sensitivity of the nanofluid properties to the fluid parameters (concentration, pH, degree of surface functionalization). Introduced quality control steps for the scale-up process.
 - Multiple adjustments have been made to the process to achieve the properties of the small batch on the larger 0.5L scale.

Task 3. Demonstrate the efficiency of nanofluid at real heat exchanger conditions

- **APPROACH:** Apparatus allows measuring experimental heat transfer coefficient at various temperatures and flow rates
- **RESULTS :** Heat transfer coefficients were measured in laminar flow regime for the fluid with as-projected thermal conductivity but viscosity slightly higher than the small batch nanofluid.

Experimental heat transfer coefficients in laminar flow (for laminar flow with Reynolds number Re<2000)

Experimental nanofluid heat transfer coefficient enhancement between 1.32 and 1.53 with an average of 1.46 compared to Mouromtseff number ratio (for laminar flow with Reynolds number Re<2000) estimated to be 1.48.

Task 4. Test fouling and erosion of the nanofluid coolant in close to real heat exchanger conditions

APPROACH: • Evaluation of fouling/clogging within pipes/channels

- Pressure drop measured as a function of time & temperature
- Flow rates are maintained as those in a radiator cooling system

RESULTS: room temperature test: No clogging observed after hundreds of hours of testing

Task 4. Test fouling and erosion of the nanofluid coolant in close to real heat exchanger conditions

- **APPROACH:** Apparatus determining erosion of target material at fixed angle & velocity and measuring power required to pump nanofluids and the base fluids
- RESULTS: Calculated pumping power for GnP nanofluid vs. EG/H₂O base fluid from properties

Estimated pumping power penalty ~7.5% more for nanofluid vs. EG/H₂O base fluid

Technology-to-Market Efforts

- 3 Patent Applications
- Signed NDA with Dynalene Inc.
- Dynalene had evaluated previous nanofluid coolant

• Other commercial interest:

Hussmann Corporation (refrigeration systems manufacturer)

Summary

- Analysis of power electronics cooling system allowed establishing criteria for efficient nanofluid coolant such as thermal conductivity ratio of more than 1.5.
- Such enhancements are possible with graphitic nanoparticles that are commercially available at reasonable costs (20% added cost to coolant)
- Graphitic nanofluids in 50/50 mixture of ethylene glycol and water showed:
 - morphology dependent thermal conductivity;
 - 50-130% increases in thermal conductivity at 5 wt.% (room temperature) – possibilities for dramatic improvement in liquid cooling
 - nanoparticle surface treatment provides better dispersion stability, lower viscosity, and higher thermal conductivity
 - enhanced performance with temperature
- The optimized and scale-up nanofluid tested in a heat transfer loop, fouling and erosion tests to assure the commercial viability of the GnP nanofluid technology
- NDA signed and technology transfer process is in progress