# Development of High-Energy Cathode Materials

## **Ji-Guang Zhang and Jie Xiao**

Pacific Northwest National Laboratory

2014 DOE Vehicle Technologies Program Review June 16-20, 2014

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Pacific Northwest NATIONAL LABORATORY

Project ID #ES056

# Overview

#### Timeline

- Start date: Oct. 2011
- End date: Sept. 2015
- Percent complete: 63%

#### Budget

- Total project funding
  - DOE share 100%
- Funding received in FY13: \$300k
- Funding for FY14: \$400k

#### **Barriers addressed**

- Low energy/low rate
- High cost
- Limited cycle life

#### Partners

- SUNY Binghamton
- Argonne National Laboratory
- Brookhaven National Laboratory
- Hydro-Québec
- Army Research Laboratory
- University of Rhode Island



# **Relevance/Objectives**

- Synthesis of Li-Mn-rich (LMR) layered composite cathode material by cost-effective approaches.
- Use advanced characterization techniques to understand the failure mechanism of LMR cathode.
- Develop electrolyte additives to improve cycling stability of LMR cathode.



# Milestones

#### FY13

- ✓ Identify the key factors related to the oxygen release in layered composite (May 2013). Complete
- Demonstrate the effects of different treatments on cathode. (Sept. 2013).
  Complete
- ✓ Identify electrolyte additives that can improve the cycling stability of layered composite. (Sept. 2013). Complete

FY14

- Preparatory work on stable cycling of high energy LMR cathode. (Dec. 13)
   Completed.
- ✓ Stable cycling of 80% capacity retention after 150 cycles from LMR high energy cathode. (March 14)
   Completed
- ✓ Identify the fundamental mechanism responsible for electrolyte-additiveinduced performance improvement of LMR cathode. (June 14) Complete
- ✓ Demonstrate the effects of elemental doping to improve the cycling stability of >200 cycles. (Sep. 14) On going



# Approach

- 1. Use advanced characterization techniques to understand the failure mechanism of LMR cathode.
- 2. Mitigate the voltage fading and capacity loss of LMR through modified synthesis route.
- 3. Utilize electrolyte additive to improve the interfacial reactions and improve cycling stability of cathode.



#### <u>Technical Accomplishments</u> Typical Cycling and Charge/Discharge Profiles of LMR Cathode



Li[Li<sub>0.2</sub>Ni<sub>0.2</sub>Mn<sub>0.6</sub>]O<sub>2</sub> 2.0-4.7 V 1C=250 mA/g

- $\checkmark$  Both capacity and voltage fades in LMR.
- Higher reversible capacity at elevated temperature but still degrades fast.



## <u>Technical Accomplishments</u> Fragmentation of LMR Particles after Cycling



Pristine LMR

Cycled LMR

- ✓ Pristine LMR is ca.100 nm with well defined layered structure.
- ✓ Microcracks were identified on cycled LMR.



## Technical Accomplishments Elemental Mapping on Fragmented Pieces



- Mn valence in the fragmented pieces was quantified to be 2<sup>+</sup> (Fig. k), much lower than that in the bulk, and is consistent with the oxygen deficient environment in the fragments.
- Li K edge peak intensity in the fragmented particle was also lower than in the bulk region.
- Oxygen release and extensive removal of Li<sup>+</sup> generated large strain and led to the fragmented pieces.



#### Hydrothermal-assisted Synthesis Mitigates Voltage Fading In LMR



- Voltage fading was observed in LMR prepared from three different methods: Layered-to-spinel phase transition still occurred.
- Voltage degradation was the least in LMR using hydrothermal assisted approach.
- > Non-uniform Ni distribution in LMR could accelerate voltage degradation.

#### Structure of LMP material prepared by CP approach



STEM imaging of fresh CP material. (a) Crystal structure of R-3m phase; (b) atomic model of the R-3m phase in the [100] zone projection, which corresponds to the green rectangle in panel (a); (c) crystal structure of C2/m phase; (d) atomic model of the C2/m phase in the [100] zone projection, which corresponds to the red rectangle in panel (c). (e) Atomic-scale Z-contrast image showing the Ni-rich induced surface modification. Note that the upper left region above the green dashed line is the Ni-rich region; its atomic model (f) corresponds to the [120] zone projection of the LiMO<sub>2</sub> R-3m phase and the intensity plot along the yellow arrow is shown in (g); the bottom right region corresponds to the [12-1] zone projection of the LiMO<sub>2</sub> R-3m phase, and the corresponding model is presented in (h).

As-prepared CP materials is dominated by LiMO<sub>2</sub> type R-3m phase

#### Structure of LMP material prepared by HA approach



TEM imaging of the fresh HA material. (a) Atomic-scale Z-contrast image showing the mixed growth of different zone axes of the C2/m phase; (b) higher magnification Z-contrast image showing the mixed [100] (yellow) and [1-10] zone (green); (c) atomic model showing the atomic arrangement of the C2/m phase in [100] and [1-10] zone projections; (d) intensity plot along the red line shown in panel (b). Note that the termination plane of the crystal is indexed as (010) plane.

> As-prepared HA materials is dominated by  $Li_2MO_3$  type C2/m phase

#### Hydrothermal-Aided Synthesis Improves the Atomic Level Uniformity of Elemental Distribution



Hydrothermalassisted synthesis conditions:

- Hydrothermal treatment: 200°C, 10 hrs
- HT calcination: 900°C, 24hrs.

- Ni segregation was found on LMR surfaces and boundaries: Impact Li<sup>+</sup> diffusivity (reported in last year's AMR meeting)
- Ni segregation was generally observed in LMR prepared by sol gel or co-precipitation method.
- Hydrothermal-assisted solid-state synthesis route homogenize cation distribution at the atomic level: no Ni segregated on LMR particle surface.

## Atomic Level Uniformity of Elemental Distribution in Cathode Nano-particles can Mitigate its Voltage Fade



- Both Co-precipitation and Sol-gel materials display fast capacity degradation during cycling at C/5.
- Hydrothermal-assisted material shows excellent cycling stability at C/5. It demonstrates a discharge capacity of 226 mAh g<sup>-1</sup> with no visible capacity fade after 320 cycles.
- Hydrothermal-assisted material also demonstrates much smaller voltage and energy loss.

## <u>Technical Accomplishments</u> Effects of TPFPB Additive by Using ANL Testing Protocol



✓ ANL testing protocol:

LMR Loading: 12.5 mg/cm<sup>2</sup>; voltage range: 2.0-4.7 V; current: C/10 for 3 formation cycles and then C/3 for cycling (1C=250 mA/g= 3.13 mA/cm<sup>2</sup>).

- ✓ TPFPB extends the cycling stability of thick LMR electrodes prepared by ANL under ANL testing protocol.
  - ✓ Lithium metal deteriorate fast under high current charging (C/3= 1.04 mA/cm<sup>2</sup>) and also contributes to the fast capacity decaying.

## <u>Technical Accomplishments</u> Proposed Mechanism of TPFPB Additive



- ✓ TPFPB captures the intermediate oxygen anions or radicals released from LMR lattice before forming O<sub>2</sub>.
- ✓ The increased oxygen solubility in TPFPB prevents  $O_2$  from direct contact with electrolyte, greatly suppressing the side reactions.
- ✓ Byproducts such as Li<sub>2</sub>CO<sub>3</sub> and LiF etc formed at high voltages are also partially soluble in TPFPB: thinner SEI layer on cathode lead to smaller polarization.
- Voltage fading may be a combined result of internal structure change and cell impedance increase.

# Collaboration and Coordination with Other Institutions

#### Partners:

- Argonne National Laboratory (Federal Laboratory): Provide LMR cathode and standard anode materials for testing.
- Brookhaven National Laboratory (Federal Laboratory): In situ XRD on electrode materials.
- Army Research Laboratory (Federal Laboratory): Supply of treated cell cans and electrolytes.
- SUNY Binghamton (University): Materials characterizations.
- Hydro-Québec (Industry): Materials modifications.



# **Remaining Challenges and Barriers**

Voltage fading was mitigated but not completely eliminated.

Both interfacial reactions and internal phase transition need to be considered to enable stable cycling of LMR without voltage degradation.



# Future Work - FY2014/15

- Identify the key factors during synthesis to mitigate the layered-to-spinel phase transition.
- Continue to use advanced characterization techniques (especially operando TEM using liquid electrolyte) to investigate the interface and bulk properties of LMR for both pristine and cycled samples
- Modulate the Ni/Mn ratio in LMR to balance the cycling stability and specific energy of the composite based on the better understanding on the fading mechanism in LMR.



# Summary

- 1. Investigated the failure mechanism of LMR
  - Surface corrosion and fragmentation were identified in cycled LMR.
  - Oxygen release and extensive removal of Li<sup>+</sup> led to LMR fragmentation.
- 2. Identified the mechanism for the improved performance of LMR cathode when TPFPB was used as additive
  - O<sub>2</sub>-/O<sub>2</sub>• /O<sub>2</sub> were partially captured by TPFPB and had less side reactions with electrolytes.
  - Byproducts such as LiF and  $Li_2CO_3$  were also partially soluble in TPFPB.
  - Thinner SEI on LMR in the presence of TPFPB thus reduced cell impedances: improved cycling and mitigated voltage fading.
- 3. Mitigated voltage fade in cathode material by improving its atomic level uniformity of elemental distribution
  - The hydrothermal pretreatment of starting materials before calcination homogenizes the cation distribution of LMR at the atomic level: less Ni segregation that impacts Li<sup>+</sup> diffusion.
  - Improved cycling stability and alleviated voltage fading during cycling.
  - Provide clues to mitigate voltage degradation from synthesis control.

# Acknowledgments

- ✓ Support from the DOE/OVT/BATT program is greatly appreciated.
- ✓ Team Members: Jianming Zheng, Liang Xiao, Wu Xu, Meng Gu, Pengfei Yan, Chongmin Wang, Jun Liu



# **Technical Backup Slides**



# <u>Technical Accomplishments</u> TPFPB Additive to Modify Interfacial Reactions



✓ Tris(pentafluorophenyl)borane ( $(C_6F_5)_3B$ , TPFPB) increases the cycling stability of LMR.

 $\checkmark$  TPFPB itself is stable up to ca.5 V and will not be oxidized during charge.



## <u>Technical Accomplishments</u> TPFPB also Alleviates Voltage Fading of LMR



- ♦ LMR operates at high voltages and the electrolyte instability is worsened in the presence of  $O_2^{2-}$  and  $O_2$  released from cathode: SEI built up cell impedance.
- ♦ Polarization was increased and accelerated the voltage fading.
- $\diamond$  The addition of TPFPB mitigated the parasitic reactions (thinner SEI).
- Voltage fading may be a combined result of internal structure change and cell impedance increase.

Pacific Northwest NATIONAL LABORATORY