Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

PI: Richard K. Huff Caterpillar Inc. June 19, 2014

Vehicle Technologies – Annual Merit Review

Project ID: PM 059

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start December 2012
- Project end December 2016
- Percent complete ~ 25%

Budget

- Total project funding: \$5.08M
 - DOE share: \$3.48M
 - Contractor share: \$1.6M
- Expenditure of Gov't Funds:
 - FY2013: \$524,952
 - FY2014: \$378,374 thru March

Barriers

- Efficiency: material and process must achieve 214 MPa endurance limit to enable higher cylinder pressure and temperature combustion regimes.
- Power Density: achieve 25% increase in strength over A842 compacted graphite iron.
- Cost: no more than 110% of production A48 gray iron cast units

Partners

- Interactions/ collaborations
 - QuesTek Innovations
 - University of Alabama at Birmingham
 - Argonne National Laboratory
 - Northwestern University
 - Jonkoping University
 - Elkem
- Project lead Caterpillar Inc.

Materials By Design®

Objectives

- New high-strength ferrous materials with at least 25% improvement in component strength relative to components made with A842 (Compacted Graphite Iron).
- Cost should not exceed 120% of the cost of components using A48 (Gray Iron).
- Material must be produced using sand or investment casting processes.
- Evaluate the performance of existing ICME codes to accelerate the development of new alloys and processing techniques.
- Develop comprehensive cost models demonstrating costs relative to established grey cast iron baselines and identifying a path to meet incremental cost targets.
- Contractor specific requirement: achieve fatigue endurance limit of 214 MPa.

Relevance

- Advanced materials that are lighter and/or stronger are essential for boosting the fuel economy and reducing emissions of modern vehicles while maintaining performance and safety.
 - Increased powertrain efficiency can be obtained by enabling engine components to withstand the high pressures and temperatures of high efficiency combustion regimes.
 - Offset weight penalties from advanced emissions-control equipment, safety devices, integrated electronic systems and power systems such as batteries and electric motors for hybrid, plug-in hybrid, or electric vehicles.
 - For example, using lighter and/or higher strength materials to achieve a 10% reduction in vehicle weight can result in a 6% – 8% fuel-economy improvement.
- Cost penalties need to be minimized to accelerate adoption by industry and creating consumer demand.
- ICME tools need to be developed and utilized to accelerate to the design and validation of new materials.

Milestones

• FY13 and FY14

Milestone	Measure	Date	Status
Updated Project Management Plan + Reporting	Monthly + Quarterly	Ongoing	Ongoing
Definition of Alloy Requirements	Performance Requirements	Mar. '13	Complete
Generate Alloy Design Concepts	4 main areas of investigation	Aug. '13	Complete
Design Prototype Alloy Concepts	~16 prototype concepts	Dec. '13	Complete
Machinability Baseline for Current High Strength CGI	Tool wear & cutting force response surface for 450 MPa CGI, milling + drilling	Dec. '13	Ongoing
Design and Produce Prototype Castings	~ 16 prototype casting samples	Apr. '14	Ongoing
Evaluate Material Properties of Prototype Casting Alloys	> 100 KSI tensile, 140 – 245 HB	May '14	Ongoing
Refine Design of High Potential (HP) Alloy Concepts (Iteration 2)	~4 HP alloy concepts	Aug. '14	

- FY15 produce and evaluate HP alloys, down-select and optimize final alloy design
- FY16 validate final alloy design, demo component design, cost model

Approach

- Utilize an Integrated Computational Materials Engineering (ICME) approach that has been proven to accelerate alloy development time by applying mechanistic materials models within a systems-engineering framework to computationally engineer new material compositions and manufacturing processes.
- Prototype melts will be produced and characterized iteratively for an alloy design within a stage-gate process.
- Standard characterization and material testing will be done to validate the alloy performance against goals and provide feedback to ICME models.
- Utilize the Advanced Photon Source (APS) at Argonne National Labs to conduct innovative measurements to map 3D graphite networks and identify nucleation sites. In-situ measurements of phase evolutions and damage during heating and cooling under various loading conditions is also planned.
- Utilize an integrated modeling approach that simulates the material, processing, and performance to optimize the design of a concept engine component to demonstrate the potential benefits of the new material.
- Cost models analyzed at the material and the component/system level as a function of annual production volumes.

Introduction - Microstructure of Cast Iron

Relevant features:

□ Solidification Stage:

- austenite (primary & eutectic)
- graphite

□ Room Temp.:

- pearlite provides strength and hardness
- graphite provides thermal conductivity, vibration dampening. decreases tensile & fatigue strength

Possible Approaches to Improving Strength (UTS, FS) of Cast Iron:

THE UNIVERSITY OF

- Refining the primary austenite dendrites
- Refining the eutectic cell size:
 - Inoculation (find most potent inoculants)
 - Solidification at the limit or outside the Eutectic Coupled Zone
- Improve strength of metal matrix:
 - Pearlite refining (alloying with Cu, Mo...)
 - Ferrite strengthening (nano-precipitates)

QuesTer

INNOVATIONS LLC

Materials By Design®

Development of Advanced High Strength Cast Alloys for Heavy Duty Engines PM 059

Caterpillar : Non-Confidential

Approach

Preliminary systems-design chart for cast iron

Inoculation Mechanism Determination

- Evidence (EDX) of sulfides as nuclei of nodules
 No oxygen peak; Sulfur peak found (with Mg, Si, Al)
- Semi-coherent matching established (B1/Graphite)
 - Sr and rare earth elements (La, Ce) lower mismatch
- DFT calculations of mixed sulfide lattices
 - Mixing enthalpies positive: Sulfide mixing discouraged
 - CeS has best matching using DFT lattice constants
 - Rare earth sulfides lower mismatch

Quick Cup Inoculation DOE

Sample #	ATAS Sample	ATAS Stand #	Ladle #	In-Stream Inoc	Rate %		Cell Size Length 90th and 50th Percentiles
1	1	1	13	Control Standard		800	
				Standard Inoc	0.05	- -	
2	1	3	13	Standard Inoc	0.1	5 600	
3	1	5	13	Standard Inoc	0.15	ں ا میں ج	
4	1	7	13	Standard Inoc	0.2	8 400	
5	2	1	2	Inoc 1	0.05	N 400	
6	2	3	2	Inoc 1	0.1	S and	
7	2	5	2	Inoc 1	0.15	Cell Size (um) 400 200	
8	2	7	2	Inoc 1	0.2		
9 10	3	1	3	Inoc 2	0.05 0.1	0	
11	3	5	3	Inoc 2 Inoc 2	0.15		
12	3	5	3	Inoc 2	0.15		1 2 3 4 5 6 7 8 9 101112131415161718192021222324
13	4	1	5	Inoc 3	0.2		Sample No.
14	4	3	5	Inoc 3	0.05		
15	4	5	5	Inoc 3	0.15		
16	4	7	5	Inoc 3	0.2		% Nodularity
17	5	1	7	Inoc 4	0.05	00.0	-
18	5	3	7	Inoc 4	0.1	> ^{80.0}	
19	5	5	7	Inoc 4	0.15	÷ 60.0	
20	5	7	7	Inoc 4	0.2		
21	6	1	9	Inoc 1	0.1	5 40.0	
22	6	3	9	Inoc 2	0.1	ק ומי	
23	6	5	9	Inoc 3	0.1	<u>o</u> 20.0	
24	6	1	9	Inoc 4	0.1	Z	
	ATAS	Cup Coolin	g Curves -	0.15% Addition Rate		% 0.0	
1180			01	and and have a 0.450			1 2 3 4 5 6 7 8 9 101112131415161718192021222324
1175 —				andard Inoc - 0.159	%		Sample No
1170 -							
<u>ຍ</u> ₁₁₆₅				oc 3 - 0.15%			
a				oc 4 - 0.15%			
Lemberature (C) 1165 – 1160 – 1155 –				50 4 - 0.15 %			
G 1155 -	<u>[</u> []_	~					
⊢ 1150 —	<u>H</u>					a b \$2mm	► EDM 2 mm diameter rods (2) out of sample
1145 —							
1140 – 25	45	65 8	35 105	125 145 10	65 185	and the second second	
			Time (s)				
				_	_	-	Development of Advanced High Strength
	лтг	חח		л 🗖 🛛 🖵	JUE	STEK	Cast Alloys for Heavy Duty Engines
5/	<u> </u>	۲N	ILL			TIONS LLC	THE UNIVERSITY OF Argonne PM 059
						rials By Design®	
					mate		Caterpillar : Non-Confidential

3D X-ray Tomography

Technical Progress & Accomplishments

Graphite Core Chemical Analysis – SEM/EDX

X-ray Micro-beam Fluorescence Analysis

Technical Progress & Accomplishments

Micro-Beam Study of Graphite in Cast-Iron

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

INNOVATIONS LLC

Materials By Design®

Argonn

NATIONAL LABORATOR

PM 059

Caterpillar : Non-Confidential

Technical Progress & Accomplishments

Eutectic Coupled Zone (ECZ) Solidification

- Inside the ECZ graphite and austenite grow in a cooperative manner as alternating lamellae; the graphite flake (lamella) size is comparable to that of eutectic cell size.
- Solidification outside the ECZ leads to refining of graphite flakes and increased tensile and fatigue strength of the material.
- Developed improved theoretical model for solidification of eutectic alloys.
- For binary Fe-C_{oraphite} system the model was validated against published experimental data; it was found:
 - the minimum eutectic spacing corresponds to the minimum growth undercooling (λ_{ex} in fig.(a))

25

· the average growth undercooling and average lamellar spacing depend on the fraction of faceted phase (graphite) in the microstructure - fig.(b) and fig.(c)

ATIONS LLC

Materials By Design®

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

NATIONAL LABORATO

Limit of the ECZ in Fe-C Based Alloys

- LECZ was theoretically determined by using the *developed eutectic growth model* and the dendritic growth model available in literature (Lipton *et al*, 1984), extended to multicomponent alloys.
- > For binary Fe-C_{graphite} system the theoretical calculations agree well with the point of slope change of graphite lamellar spacing *vs* solidification undercooling (V_{LECZ} = 6.5 µm/s).
- Ternary Fe-3.78 wt%C-1.67wt%Si alloy (*i.e.*, slightly hypereutectic) alloy:
 - Directional solidification experiments at solidification velocities of 1.0 μm/s and 5.0 μm/s were performed at UAB, revealing that V_{LECZ} < 1.0 μm/s.
 - Theoretical calculations showed $V_{LECZ} = 0.85 \ \mu$ m/s and 1.03 μ m/s for values of carbon diffusion coefficient in liquid of $1.0 \cdot 10^{-9} \text{ m}^2$ /s and $1.25 \cdot 10^{-9} \text{ m}^2$ /s, respectively. This reveals the need for improved knowledge on the diffusion coefficients of alloying elements in liquid iron.
- Current findings:
 - Si lowers *V*_{LECZ} and increases the eutectic lamellar spacing as compared to binary Fe-C eutectic.
 - For the same undercooling, the solidification velocity of eutectic alloy with 1.67wt%Si is 21% higher as compared to that of binary Fe-C eutectic.
 - At solidification velocities $V > V_{LECZ}$ austenite dendrites appear in the microstructure of an alloy of eutectic or hypereutectic composition, leading to refinement of graphite lamellae. Improved mechanical properties are expected for a material exhibiting more austenite dendrites and finer graphite in the microstructure.

Austenite dendrites (γ) in Fe-C-Si alloy of hypereutectic composition solidified at $V > V_{LFCZ}$

Casting Trials

- Scaled up casting trials being performed at UAB's experimental foundry
 - Step block geometry chosen for test casting to provide a range of solidification rates

CATERPILLAR®

Materials By Design®

NATIONAL LABORATO

Set up for in-stream post inoculant addition

PM 059

Technical Progress & Accomplishments

Casting Trials – Example Graphite Structure

B – Baseline Casting – No Post-Inoculant #1 – Post-Inoculant 1

Casting Trials – Example Properties

VATIONS LLC

Materials By Design®

Caterpill

Pearlite (Ferrite) Nano-precipitation Strengthening

- Strengthen pearlitic matrix during stress relief utilizing precipitate phases
 - Results show hardness peaks over baseline solid solution for each alloy
 - Alloy 3 design shows highest precipitate hardening response
- LEAP (atom probe) measurements completed to determine size/composition of precipitates
 - Results used to calibrate precipitation models
- Enhanced quench suppressibility

CATERPILLAR®

- Target precipitates to push peak hardness to higher temperatures
- Avoid precipitate formation during initial cooling

QuesTek

ATIONS LLC

Materials By Design®

Response to Reviewers Comments

Program not reviewed last year

Collaboration – Project Team

p. 22

Remaining Challenges and Barriers

- Nucleation and growth of austenite + graphite is not completely understood.
 - There could be a theoretical limit to the nucleation density possible and the resulting microstructure refinement
 - Level of control of the eutectic growth that is attainable through control of alloying and casting conditions has not been quantified
- Material design that meets the mechanical properties targets while simultaneously satisfying thermal conductivity and manufacturing cost requirements has not been achieved.
 - Can mechanical properties be achieved with a vermicular graphite morphology?
- Satisfactory ICME tools for the fundamental material modeling to design cast iron alloys are not available.

Future Steps

- Nucleation
 - FIB + SEM serial sectioning of deep etched graphite (see figure on right) structures to identify nucleants
 - Graphite core structure identification by X-ray micro-beam fluorescence to identify potential nucleant locations in complex vermicular shaped graphite

Deep-etched

- X-ray in-situ cast iron solidification experiments
- Refine precipitation models of strengthening phases and inoculants
 - Graphite/austenite precipitation modeling
 - DFT calculations of inoculant/graphite interfacial energies

THE UNIVERSITY OF

- Growth
 - Perform directional solidification experiments at various solidification velocities and levels of alloying elements (Si, Mn, Cu, Al, etc.)
 - Quantitative evaluation on the influence of alloying elements and solidification conditions on the length scales of developing microstructure

NATIONAL LAB

- Fine tune the theoretical model for calculating LECZ

Quester

ATIONS LLC

Materials By Design®

Future Steps

- Casting Trials
 - Continue step block casting trials to evaluate concepts to refine the microstructure, control the graphite morphology and strengthen the matrix
 - Post-inoculant studies to refine the austenite and eutectic nucleation and control the graphite morphology
 - CGI DOE to investigate the effects of carbon equivalent and alloying elements on microstructure and mechanical properties
 - DOE on high-thermal conductivity DI
 - Casting process methods to achieve desired solidification rates in actual castings
- Precipitation Strengthening
 - Further isochronal/isothermal studies + LEAP to identify strengthening precipitates (Alloy 3)
 - Evaluate hardening potential of nano-precipitation strengthened alloys in pearlitic microstructure
 - Evaluate quench suppressibility

Summary

- Project is relevant to the development of high-efficiency, low-emission heavy-duty engines
 - Improved material properties are needed to enable heavy-duty engines to operate in optimal combustion regimes
 - Increased mechanical properties will allow the mass of heavy-duty engines to be reduced, which will improve fuel-economy at the vehicle level
- FY13-14 focused on identifying and modeling the critical mechanisms governing the microstructure development during cast iron solidification
 - X-ray methods established to reveal complex 3-D graphite network in cast irons and identify the composition to locate potential nucleants in complex graphite shapes.
 - Progress made on modeling the nucleation potency (lattice disregistry and interfacial energies) of inoculants.
 - Eutectic Coupled Zone (ECZ) solidification model extended to multi-component alloys for use with high strength iron alloy compositions.
 - Experimental foundry upgraded to 500 lb. heat capacity. Ramping up step block casting experiments for inoculation and alloying experiments.
 - Alloys have been identified that show a precipitation strengthening effect in the target temperature ranges

Technical Back-up Slides

Development of Advanced High Strength Cast Alloys for Heavy Duty Engines PM 059 Caterpillar : Non-Confidential

p. 27

Improved Mechanical Properties by Solidification at The Limit of Eutectic Coupled Zone (LECZ)

Background on Eutectic Coupled Zone (ECZ)

- Cast Iron solidifies with an irregular eutectic microstructure and exhibits a skewed ECZ
- Inside the ECZ graphite and austenite grow in a cooperative manner as alternating lamellae; the graphite flake (lamella) size is comparable to that of eutectic cell size
- In certain solidification conditions, an alloy of eutectic or slightly hypereutectic chemistry can solidify outside the ECZ with austenite dendrites + eutectic microstructure; this is because the skewedness of ECZ
- Solidification outside the ECZ leads to refining of graphite flakes (*i.e.*, shorter length) and increased tensile and fatigue strength of the material
- Determining the limit of ECZ will allow selecting and imposing the solidification conditions leading to refined microstructure and improved mechanical properties of the material

> Objectives

CATERPILLAR

• Determine LECZ of the alloy by means of theoretical modeling (dendritic and eutectic growth)

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

• Improve on eutectic growth theory to account for multicomponent alloys and irregular microstructure of cast iron

NATIONAL LABORAT

- Validate theoretical developments against directional solidification experiments
- Validate the concept on test castings solidified inside and outside the ECZ
- Application of LECZ approach to cast engine components

QuesTek

INNOVATIONS LLC

Materials By Design®

<u>Technical Accomplishment:</u> *Eutectic Solidification Model for Multicomponent Fe-C Based Alloys*

- > Developed improved theoretical model for solidification of eutectic alloys accounting for:
 - multicomponent alloys
 - · irregular eutectic microstructure in cast iron
 - · density difference between phases in microstructure
 - phase fraction change with respect to solidification conditions (*e.g.*, undercooling temperature or imposed solidification velocity) fig.(a)
- > For binary Fe-C_{graphite} system the model was validated against published experimental data the minimum eutectic spacing corresponds to the minimum growth undercooling (λ_{ex} in fig.(a))
 - the average growth undercooling and average lamellar spacing depend on the fraction of faceted phase (graphite) in the microstructure – fig.(b) and fig.(c); the same relationships also hold for Fe-Fe₃C and Al-Si irregular eutectics

<u>Technical Accomplishment:</u> Limit of Eutectic Coupled Zone in Fe-C Based Alloys

- LECZ was theoretically determined by using the developed eutectic growth model and the dendritic growth model available in literature (Lipton *et al*, 1984) which was extended to multicomponent alloys
- > For binary Fe-C_{graphite} system the theoretical calculations agree well with the point of slope change of graphite lamellar spacing vs solidification undercooling (V_{LECZ} = 6.5 µm/s)
- Ternary Fe-3.78 wt%C-1.67wt%Si alloy (*i.e.*, slightly hypereutectic) alloy:
 - Directional solidification experiments, at solidification velocities of 1.0 μ m/s and 5.0 μ m/s, revealed that V_{LECZ} < 1.0 μ m/s
 - theoretical calculations showed $V_{LECZ} = 0.85 \,\mu$ m/s and 1.03 μ m/s for values of carbon diffusion coefficient in liquid of $1.0 \cdot 10^{-9} \,$ m²/s and $1.25 \cdot 10^{-9} \,$ m²/s, respectively. This reveals the need for improved knowledge on the diffusion coefficients of alloying elements in liquid iron
- Current findings:
 - Si lowers V_{LECZ} and increases the eutectic lamellar spacing as compared to binary Fe-C eutectic
 - for the same undercooling, the solidification velocity of eutectic alloy with 1.67wt%Si is 21% higher as compared to that of binary Fe-C eutectic
 - at solidification velocities V> V_{LECZ} austenite dendrites appear in the microstructure of an alloy of eutectic or hypereutectic composition also leading to refinement of graphite lamellae. Improved mechanical properties (tensile & fatigue strength) are expected for a material exhibiting more austenite dendrites and finer graphite in the microstructure

Austenite dendrites (γ) in Fe-C-Si alloy of hypereutectic composition solidified at $V > V_{LECZ}$ Development of Advanced High Strength

 Cast Alloys for Heavy Duty Engines PM 059

Caterpillar : Non-Confidential