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Overview




Relevance/Objectives

e Objectives

o Develop high energy, high performance cathode materials including
composites and coated powders: emphasis on modified high capacity NMCs

o Optimize low-cost spray pyrolysis methods for preparation of materials
o Understand effect of Ti-substitution on high capacity NMCs

e Relevance

o Improving NMCs to increase capacity by cycling to higher voltages is the
fastest route to the higher energy density batteries needed for vehicle
applications

= Ti-substituted NMCs show improved practical capacity (up to 225 mAh/g) and better
high voltage cycling than baseline materials

= Ti-substituted NMCs are structurally stable and do not exhibit voltage fade like
layered-layered composites

o Spray pyrolysis is an attractive, one-step method for preparation of spherical
particles (good for processing). Coated and composite materials can be made
in either one or two steps

o Higher energy, simpler processing= lower costs per kWh




*Milestones

e Complete optimization of Ti-NMC synthesis with TiOSO,
precursor (Dec-13)
o Discontinued. This effort has been transferred to the ABR program

e Go/No-Go decision on infiltration of LiFePO, into LNMO (Mar.-
14).
o Criteria: A “no go” decision will be made if attempts to prevent reaction of LiFePO4 with
LNMO during processing fail (Mar-14)
o No go decision made. Effort will be redirected towards composites with spray
pyrolyzed NMCs.
e Complete soft XAS experiments on Ti-NMCs (Jun-14).
o Completed ahead of schedule
o Paper published in Nature Communications

e Go/No-Go decision on spray pyrolysis of NMCs (Sept.-14)

o Criteria: A “no go” decision will be made if the electrochemical performance of the spray-
pyrolyzed material does not equal that of the material made by co-precipitation.

o Spray pyrolyzed materials appear to have superior performance
o On schedule to make a “go” decision




Approach/Strategy

* Use soft XAS and other synchrotron techniques to
understand effects of high voltage cycling on NMCs and
Ti-substituted NMCs
= (Goal is higher capacity without sacrificing performance
= \What is origin of improved performance in Ti-substituted samples?
« Paper published in Nature Communications

* Synthesize NMCs by spray pyrolysis techniques

« Simple one-step process, potentially very low cost

= Good control of morphologies (uniform spherical particles)

= Can make solid, porous, or hollow particles by controlling residence
time

= Can make composites with hollow particles (fill with a second phase
by infiltration)

= Can make coated materials in one step by exploiting different melting
points of precursors

« Demonstrated that hollow NMC particles made by spray pyrolysis
have superior performance to those made by co-precipitation
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Methods
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Technical Accomplishments/Progress
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XRD pattern with Rietveld
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Technical Accomplishments/Progress

Surface Reconstruction and Chemical Evolution

After Cycling (2.0-4.7V)
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Surface transition metals are in the reduced state after

(@) Mn L-edge XAS/TEY spectra
and (b) Co L-edge XAS/TEY
spectra after the designated
number of cycles. (¢) Mn L-edge
XAS spectra and (d) Co L-edge
XAS spectra for an electrode after
2 charge-discharge cycles in the
AEY (blue), TEY (red) and FY
(green) modes. (e) EELS line scan
profile for an NMC patrticle along
the <001> direction after 5 cycles:
(i) STEM image for the scanning
pathway, (ii) Mn L-edge EELS
spectra along the scanning
pathway, (iii) 2D EELS map
visualizing the peak shift, and (iv)
concentration profiles for Mn2* and
Mn#* obtained from the data using
a linear combination method. All the
measurements were performed on
electrodes in the fully discharged
state.




Technical Accomplishments/Progress

Atomic Resolution ADF-STEM Images of Particles

(a) After 30 hours electrolyte
exposure (b) After 1 cycle (2.0-
| 4.7 V) (c and d) FFT results
showing the surface
reconstruction layer (Fm3m
| [110] zone axis) and the NMC
layered structure (R3m [100]
| zone axis) respectively in (b).
(e) Showing variation of the
surface reconstruction layer
thickness on orientation after 1
cycle (2.0-4.7 V). (f) Image

,. Sy showing loose atomic layers on
i an NMC particle, after 1 cycle
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Technical Accomplishments/Progress

Dependence of Surface Reduced Layer on
Voltages and Electrolyte Exposure
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(@) Mn L-edge XAS/TEY spectra
and (b) Co L-edge XAS/TEY
spectra of pristine and cycled
electrodes (20 cycles). (¢) Mn L-
edge XAS/TEY/ FY spectra and
(d) Co L-edge XAS/TEY/FY
spectra of a pristine electrode
and one exposed to electrolytic
solution for 7 days. The blue
dashed arrows in (a-d) indicate
the increase of transition metals
having low oxidation states. (e)
Schematic model of a NMC
particle with a surface reduced
layer and a surface reaction layer
(SRL).




Charged NMC Particles
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o Rock-salt structure (Fm3m): TM2* (electrochemically inactive for cathode)
o Charged layered structure (R3m): Charged Ni3*4* Mn4* Co3*



Surface Reconstruction is Crystal Orientation Dependent



Technical Accomplishments/Progress

« Uniform hollow spheres
~ 10 ym made up of
nanoparticles

« Hierarchical structuring
results in good
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*Responses to Previous Year
Reviewers‘lomments
()

* Several reviewers suggested coordinating Ti-NMC work with groups
working on high voltage electrolytes

* One reviewer asked for more cycling data

Response: The practical Ti-NMC work has been transferred to an ABR project
with Farasis, Inc., which includes a high voltage electrolyte developer (DuPont).
Materials will be tested in full cell configurations at different rates and cycled
more extensively, using specially developed electrolytes. Work on Ti-NMCs
under BATT is now solely focused on diagnostics directed towards
understanding high voltage performance.

* Two reviewers expressed concern that Ti-substitution in NMCs was

not a new concept; one suggested a literature and patent search.

Response: There are examples in the literature where Ti** has been substituted for
Mn#* (isovalent substitution) in NMCs. Note that our work involves substitution of Ti**
for Co%* (aliovalent substitution), which has not been reported in the literature until
now. Isovalent substitution of Ti** degrades performance, while aliovalent
substitution improves performance.




* Collaboration and Coordination with
Other Ir@titutions

* Soft XAS experiments performed at Stanford Synchrotron Radiation Lightsource (SSRL)
with Dr. Dennis Nordlund and Dr. Tsu-Chien Weng. (outside VT program).

* Synchrotron XRD and hard XAS experiments with Dr. Thomas Richardson (retired) and Dr.
Guoying Chen of LBNL (inside VT program) and Dr. Apurva Mehta of SSRL (outside VT
program)

* Synchrotron XPS experiments underway with Dr. Phil Ross (retired) and Dr. Ethan Crumlin
of LBNL (outside VT program)

* TEM experiments with Dr. Huolin Xin, previously at LBNL, now at Brookhaven National Lab.
(outside VT program)

* Computational work underway with Professor Mark Asta, Materials Sciences and
Engineering Department, U. C. Berkeley (outside VT program)

* Cathode synthesis work with Professor T. Rojo of the University of the Basque Country and
ClCenergigune, Spain (outside VT program)

* Cathode synthesis work and synchrotron experiments with Dr. Jordi Cabana, previously at
LBNL, now at the U. of lllinois at Chicago (previously in VT program, now in JCESR)




*Remaining Challenges and Barriers

* Achieving higher capacity in NMCs probably requires cycling
to higher voltages. Surface rock salt formation is accelerated
under these conditions, causing losses upon cycling.

= Ti substitution ameliorates this to some extent, but it still occurs

= Can we continue to improve materials, either by substitution or by other
means?

= An encouraging example is high voltage LiCoO,
= This is worth trying-probably quickest route to higher energy density

* Spray pyrolysis synthesis of NMCs results in hollow spheres,
not good for energy density

= Can we make solid particles by lengthening residence time?
+ Can we make dense composite materials by infiltrating hollow particles?




Proposed Future Work

* Note that synthesis and full cell characterization (including
extended cycling) of Ti-NMCs has been transferred to an ABR
project with Farasis, Inc.

* Synchrotron X-ray Raman experiments will be carried out to
improve understanding of rock salt formation in NMC materials
(milestone planned)

* Spray pyrolysis/infiltration will be used to make composite
materials with hollow NMC spheres. Infiltrates may include

LiNiy sMn, 50,, LiNi, sMn, ;O,, and NMCs with higher Ni
content (go/no go decisions on various combinations)

* Coated particles will be made by spray pyrolysis and tested
(coatings include Al,O5, Zn0O, etc.) to improve high voltage
performance. (go/no go decisions on processing)




Summary

e Arock salt structure is formed on NMC particle surfaces during
cycling and upon electrolyte exposure.

e The thickness of the rock salt layer depends on particle surface
facet, length of electrolyte exposure, and cycling regime

e The rock salt layer contains reduced Ni, Co, and Mn

e Capacity losses during high voltage cycling are due primarily to
impedance rise (low rate discharge recoups most of the capacity)

e Ti-substitution may modify composition of rock salt layer, making it
more conductive

e Spray pyrolysis is a simple one-step process for making NMCs with
spherical particle morphologies and excellent electrochemical
properties

» Hollow particles may be useful for preparation of composites, solid
particles can be made by lengthening residence time.






