Cummins-ORNL\FEERC Emissions CRADA: NO_x Control & Measurement Technology for Heavy-Duty Diesel Engines, Self-Diagnosing SmartCatalyst Systems

W.P. Partridge (PI), M.-Y. Kim, J.A. Pihl, R.M. Connatser, J.-S. Choi Oak Ridge National Laboratory

> N. Currier (PI), A. Yezerets, K. Kamasamudram Cummins Inc.

Project ID: ACE032

Presenter: Bill Partridge partridgewp@ornl.gov

2014 DOE Vehicle Technologies Program Annual Merit Review June 19, 2014, Arlington, Virginia

U.S. DOE Program Management Team: Gurpreet Singh, Ken Howden, Leo Breton

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

AK RIDGE NATIONAL LABORATORY

Overview

<u>Timeline</u>

- New SOW start: Sept. 2012
- Current end date: Sept. 2015
- ~53% Complete

<u>Budget</u>

- 1:1 DOE:Cummins cost share
- DOE Funding:
 - FY2012: \$450k
 - FY2013: \$400k
 - FY2014: \$350k

Barriers

- Emissions controls
 - Catalyst fundamentals,
 - Reactions & mechanistic insights
 - Catalyst models (design tools & imbedded)
 - Control strategies & OBD
- Combustion Efficiency
 - Shift emissions tradeoff to fuel efficiency
- Durability
 - Enhanced durability via knowledge-based controls
- Cost
 - Lower catalyst & sensor costs
 - Lower development costs

Partners

- ORNL & Cummins Inc.
- Several informal collaborators

Objectives & Relevance

Elucidate Practical & Basic Catalyst Nature

for enabling improved Modeling, Design & Control

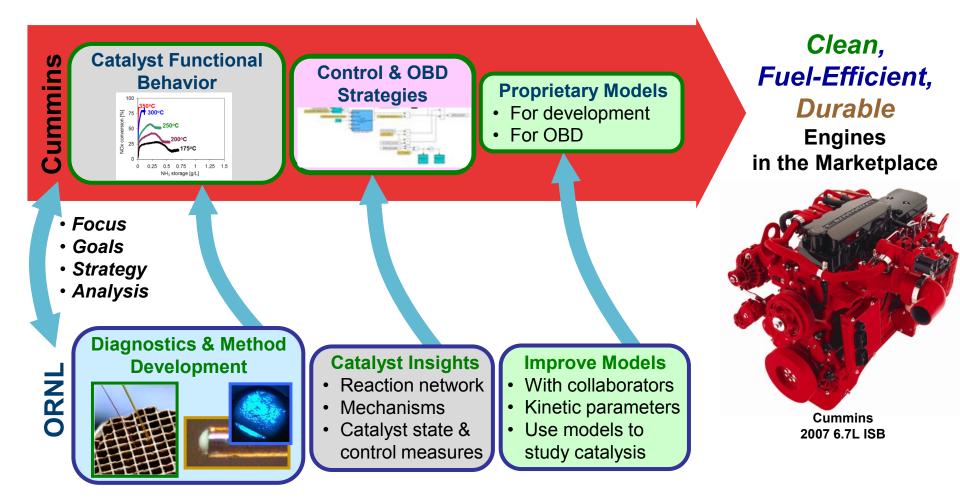
<u>Objectives</u>

- Develop diagnostics to advance applied & basic catalyst insights
- Understand impact of ageing on catalyst performance
 - Focus on distributed performance
 - NH₃ capacity and utilization
 - Conversion distribution

<u>Relevance</u> – Detailed Catalyst Insights impact:

- Design models
- Control strategies & models
- NH₃ dosing control
- Required engineering margins (engine-efficiency vs. -emissions tradeoffs)
- System capital & operation costs

2013 Milestones:


 Assess distributed performance of DeGreened commercial 2010 Cummins SCR catalyst samples (2010CMI)

2014 Milestone (on schedule for timely completion):

- \checkmark Complete assessment of probe-to-probe variations in NH₃ sensors (Q1)
- \checkmark Assess NH₃ capacity of Lab-Aged 2010CMI sample (Q2)
- Assess distributed performance of Lab-Aged 2010CMI sample (Q3)
- Compare distributed performance of DeGreened & Lab-Aged 2010CMI (Q4)

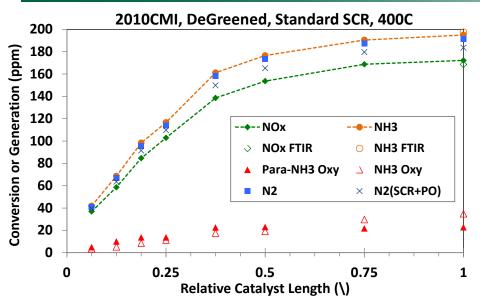
Global Approach for Improving Energy Security

Develop & apply advanced diagnostics for catalyst characterization to improve: catalyst <u>models</u>, <u>design</u>, <u>state assessment</u> & <u>controls</u> for <u>fuel-efficient engine systems</u>

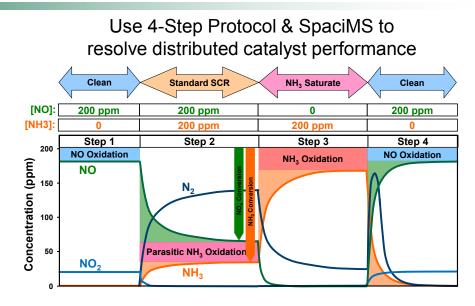
Approach

Spatiotemporal Intra-Catalyst Characterization to Enhance Performance, Control, Cost & Durability

- Cummins-ORNL CRADA Team identifies catalyst-performance barrier
 - Understand distributed impacts of ageing on various catalyst functions
- Develop procedures to measure intra-SCR distributed performance
 - Analysis methods, hardware, diagnostics as necessary
- Assess commercial catalyst in various states & conditions
 - DeGreened, Lab Aged, Field Aged, other specific lab- or field-condition states
 - Standard & Fast SCR; Various temperatures
- Apply diagnostics to characterize distributed SCR performance
 - Focus on NH₃ capacity, SCR, parasitic NH₃ oxidation, NO & NH₃ oxidation
- Correlate impacts to gain insights into controlling chemistry
 - Sensitivity of various functions to state & condition changes
 - Mine insights for diagnostic and control indicators
- Compare experimental results to catalyst-simulation models
 - Model validation, improvements & tuning

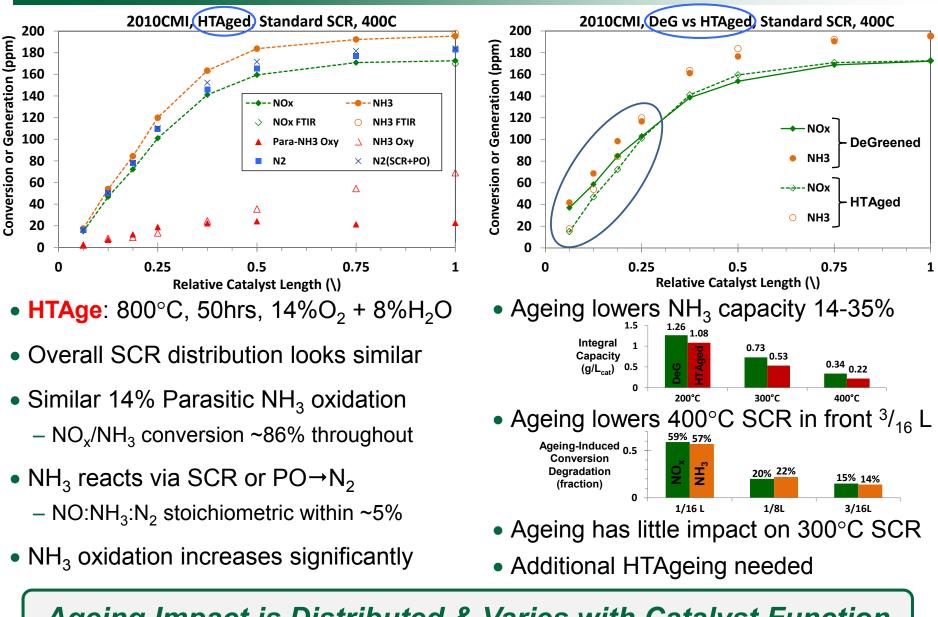

Characterize Performance of Commercial SCR Catalyst

- Focus on Hydrothermal Ageing impacts
 - Lowers NH₃ capacity
 - Increases NH₃ oxidation
 - Does not change Parasitic NH₃ oxidation
 - Does not change integral SCR conversion
 - Does not change intra-catalyst SCR distribution
 - For Standard SCR at 300°C
 - In back 3/4L of catalsyt for Standard SCR at 400°C
 - Degrades 400°C Standard SCR in front 3/16L of catalyst

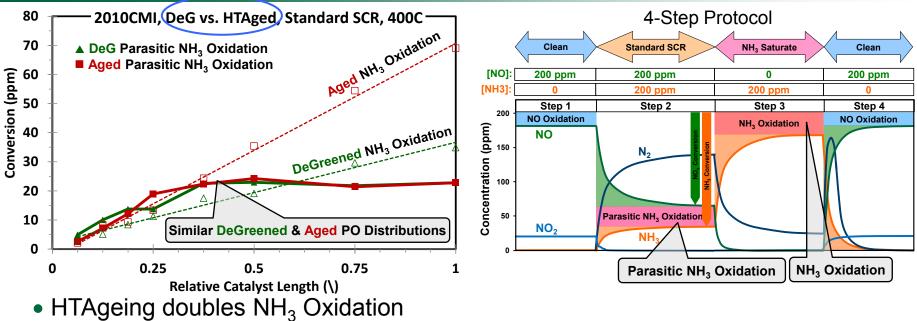

Analytical Development

- Improved analysis with better species & nitrogen balances
- Demonstrated non-invasive nature of intra-catalyst sampling technique
- Demonstrate Fast-SpaciMS with improved transient response

Technical Progress: NH₃ Divided Between SCR & Parasitic Oxidation


- **DeG**: 700°C, 4hrs, 10%O₂ + 5%H₂O
- Variable SCR along catalyst length
- Effluent Spaci & FTIR match (NO_x & NH₃)
- 12% Parasitic NH₃ oxidation (PO)
 - NO_x/NH_3 conversion ca. 88% throughout
 - − Makes N_2 here; $PO \rightarrow N_2$
- (NO_x-free) NH_3 oxidation linearly increases

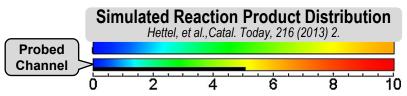
- Good overall N balance ~4%
- PO causes N₂ < NH₃ conversion
 1:1 N₂:NH₃ via SCR, but 1:2 via PO
- Simple NO:NH₃:N₂ stoichiometry
 - $-N_2 \sim 2\%$ below NH_3 conversion
 - Predicted N₂ ~4% below measured N₂
 - NH₃ neatly split between SCR & PO→N₂
 - Consistent with zero N₂O generation


Species Distributions Correlate Throughout Catalyst Length & Can Be Used to Study Ageing Impacts

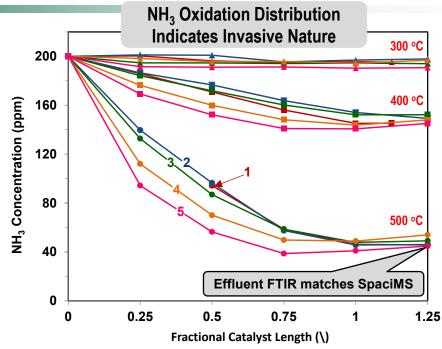
Technical Progress: HTAgeing Does Not Impact Integral SCR Performance

Ageing Impact is Distributed & Varies with Catalyst Function

Technical Progress: Different Ageing Impacts on Parasitic & NH₃ Oxidation


• TriAgeing doubles Nila Oxidation

- Parasitic-NH₃ Oxidation unchanged by HTAgeing
 - Thus: consistent N-Balance & simple NH_3 reaction via SCR or $PO \rightarrow N_2$
 - Further ageing may change Parasitic oxidation: $PO \rightarrow N_2 \& PO \rightarrow N_2O$
 - Impact balances & N₂O selectivity (low N₂O difficult to measure)
- Parasitic & NH₃ Oxidation have different ageing responses
 - Demonstrates that these are different reactions
 - Design & control models need to incorporate both for NH₃ management


Aging Impacts Catalyst Significantly, but Not Integral SCR Performance Need to Understand Various Ageing Impacts to Advance Efficiency

Technical Progress: Invasive Nature of Intra-Catalyst Capillaries

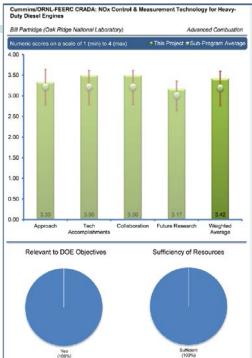
	Varying Probe Invasive Nature				
No.	OD (um)		Blocking	Capillary	
	Cap. <mark>o</mark>	Fiber	Channel (%)	Position	
1	150	-	1.2	$\mathbf{\Diamond}$	
2	200	-	2.2	\diamond	
3	375	-	7.7	\diamond	
4	200	700	29.2	\diamond	
5	375	700	34.7	\diamond	

- More people are using SpaciMS
 - Different implementations
 - More discussion of invasiveness
- Evidence of invasiveness
 - Greater conversion gradients
 - Conversion step at outlet
 - A simple check we commonly use

NH₃ Oxidation Invasiveness Study

- No. 4 & 5 clearly invasive
 - Greater intra-catalyst gradients
 - Blocks ca. 30-35% channel area
- No. 1 & 2 are non-invasive
 - Equivalent conversion profiles
 - We use 200 μ m capillaries (No.2)

Our SpaciMS Approach is Effectively Non-Invasive


Responses to 2013 Review Comments

Numerous Positive Comments:

- "instrumental work in this project was very good"
- "very good & comprehensive approach covers real-world challenges"
- "strong collaboration with industry partner keeps work sharply focused on barriers most impacting industry"
- "excellent collaborations with industry and universities and international partners"
- "Good participation in CLEERS, DEER, etc."
- "ORNL's unique expertise has helped in many applications related to meeting DOE's objectives."

Recommendation:

- "would be nice to see more catalyst <u>ageing</u>"
- "more work on catalyst <u>aging</u> would be really nice"
- "incorporation of laboratory and field aged catalysts..critical"
- "more work on how aging affects the correlation between SCR efficiency and NH₃ storage..recommended"
 - Work over the last year has focused on lab-aged catalyst
 - Future work will focus on field-aged catalyst
 - Analysis has and will continue focus on correlating aging-induced distribution changes to elucidate degradation pathways; including NH₃ capacity components.
- "2014 plans are pretty bland"
 - We have tried to better communicate our research plans vis-à-vis remaining barriers.
- "not much results from collaboration partners especially from universities"
 - With the limited time, we primarily focus on the main work within the CRADA partnership.
 - Several publications and presentations from these collaborations are called out in this year's presentation and cited in the 'Additional Slides for Reviewers.'

Collaborations & Coordination with Other Institutions

• Cummins

- CRADA Partner, Neal Currier (Co-PI)

• Chalmers (Prof. Olsson)

- SCR kinetic analysis & modeling (Xavier Auvray)
- See Shwan publication; Auvray SCR publication submitted

• CLEERS (ACE022, Pihl, Wednesday 4:15pm)

Diagnostics, analysis & modeling coordination

• Politecnico di Milano (Profs. Tronconi & Nova)

- Precompetitive study of selected SCR mechanisms (with CLEERS)
- See Ruggeri presentation; publication in process

• Institute of Chemical Technology, Prague (Prof. Marek & Dr. Kočí)

- Precompetitive study of LNT N₂O chemistry (with CLEERS)
- KONTAKT II Grant from Czech Republic Government
- Dr. Kočí working at ORNL (May 28-31, 2013 & Sept. 1-5, 2014)
- ICTP PhD student working at ORNL (David Mráček, Sept.-Nov. 2013 & May-June 2014)
- Using Fast-SpaciMS to resolve N₂O vs. reductant transients
- See 2 publications (Kočí, Bártová) & 2 presentations (Bártová, Mráček)

• Dissemination via Publications & Presentations

- 3 Archival Journal Publication, 1 Book Chapter & 9 Presentations

Remaining Challenges & Barriers, and Proposed Future Work

Remaining Challenges:	Future Work:	
Characterize distributed impact of ageing on SCR-catalyst functions & performance	 Study HydroThermally Lab-Aged sample Complete experimental matrix & analysis DeG & HTAged 2010CMI SCR samples Standard & Fast SCR 200, 300 & 400°C 	
 Resolve NH₃ Capacity distributions via transient analysis Resolve Dynamic-, Unused- & Total-Capacity 	 Determine capacity distributions using an improved transient analysis method incorporating instrument isotherms 	
 Understand mechanisms of ageing-induced performance degradation Mine insights for improving catalyst development models & control 	 Correlate impacts of Temp., SCR Reaction & Ageing on distribution of specific functions E.g., further work as presented here Comparison of measurements to SCR models Assess model performance and sensitivity vs. specific parameters, ageing and functions Continue University collaborations 	
 Advance detailed understanding of ageing Impacts of degree of ageing Impacts of different real-world conditions 	 Similar studies on catalyst in other aged states Further HT Lab Ageing Field-aged 2010CMI catalyst samples 	

Summary

Relevance

- CRADA work enables improved catalyst knowledge, models, design & control
- This reduces catalyst system costs & required engine-efficiency tradeoffs
- This in turn enables DOE goals for improved fuel economy

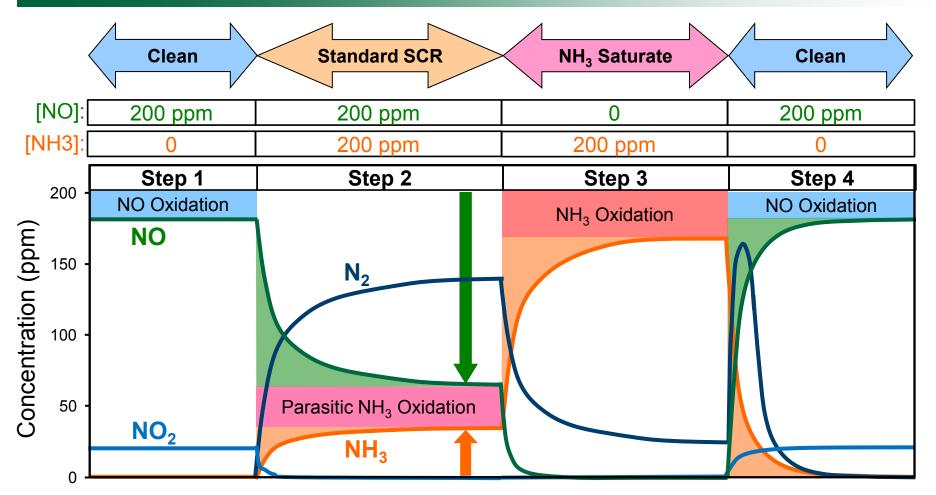
• Approach

- Develop & apply diagnostics to characterize catalyst nature
- Analyze data to understand mechanistic details of how the catalyst functions
- Develop improved catalyst models based on improved catalyst knowledge

Technical Accomplishments

- Assessed impacts of hydrothermal lab ageing on commercial SCR catalyst functions
 - NH₃ capacity, SCR, Parasitic NH₃ oxidation, NH₃ Oxidation
- Capillary sampling demonstrated to be effectively noninvasive

Collaborations


- Numerous university collaborations resulting in presentations, publications and advances
- Coordination & collaboration with other DOE projects to maximize benefit

• Future Work

- Analyze for distribution of NH₃ capacity components on DeGreened and Aged samples
- Analyze impacts of further lab ageing and field ageing
- Assess ageing impacts via experimental correlations and comparison to catalyst models

Technical Back-Up Slides

Cummins 4-Step Protocol Resolves Reaction Parameters

- Step1: NO oxidation
- Step2: SS NO_x & NH₃ conversions, Parasitic NH₃ oxidation, Dynamic NH₃ capacity
- Step3: NO_x-free NH₃ oxidation, Unused NH₃ capacity
- Step4: NO oxidation, Total NH₃ capacity for the Department of Energy

```
Total = Dynamic + Unused
```