Cummins-ORNL\FEERC Combustion CRADA: Characterization & Reduction of Combustion Variations

W.P. Partridge (PI), J. Yoo, D.A. Splitter, J.P. Szybist,V. Prikhodko, R. S.-Gonzalez, R.M. Connatser, J.E. ParksOak Ridge National Laboratory

S.C. Geckler (PI), A. Perfetto, R.A. Booth, D.E. Koeberlein, K. Augustin, S.-m. Moon, S.S. Popuri, F. Tao, L.E. Kocher Cummins Inc.

Project ID: ACE077

Presenter: Bill Partridge partridgewp@ornl.gov

2014 DOE Vehicle Technologies Program Annual Merit Review June 18, 2014, Arlington, Virginia

U.S. DOE Program Management Team: Gurpreet Singh, Ken Howden, Leo Breton

AK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

<u>Timeline</u>

- New SOW start: Sept. 2012
- Current end date: Sept. 2015
- ~53% Complete

<u>Budget</u>

- 1:1 DOE:Cummins cost share
- DOE Funding:
 - FY2012: \$300k
 - FY2013: \$300k
 - FY2014: \$300k

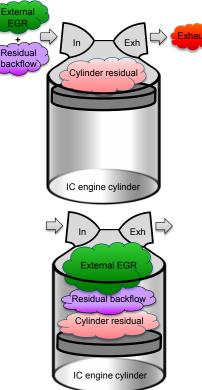
Barriers

- Engine combustion
 - Intake-charge uniformity
 - Combustion uniformity
 - Incomplete combustion
- Engine controls
 - Variability & diagnostics
 - Lower-penalty control methods
 - Diagnostics for demonstration of improved efficiency control methods
- Durability
 - Combustion instabilities
 - Corrosion, erosion etc. from nonuniformity induced condensation

Partners

- ORNL & Cummins Inc.
- Cummins HD SuperTruck project

Objectives & Relevance


Understand Nature of Cylinder Charge Fluctuations to Accelerate Development of Advanced Efficiency Engine Systems

Objectives

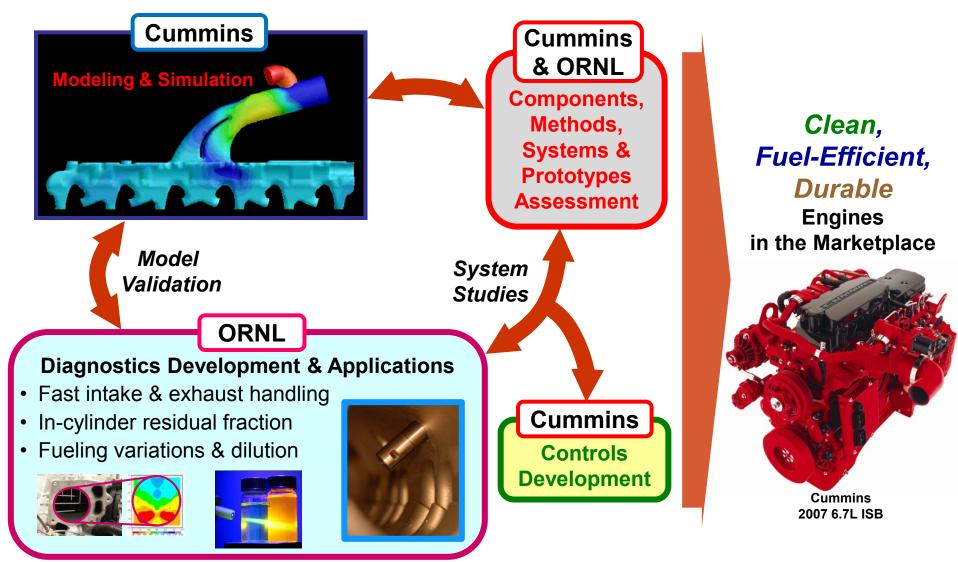
- Assess fluctuations in cylinder-charge components
 - Internal EGR (residual & rebreathed residual-backflow)
 - External EGR & intake air
- Apply insights to advance development
 - Validate & tune 1-D & 3-D design models
 - Assess specific hardware & architectures
 - Assess control strategies

<u>Relevance</u> – Charge Uniformity impacts:

- Combustion uniformity
- Performance of advanced-combustion strategies (RCCI, PPCI)
- Required engineering margins (efficiency penalty, fuel economy)
- Durability & ultimate efficiency limits across all cylinders

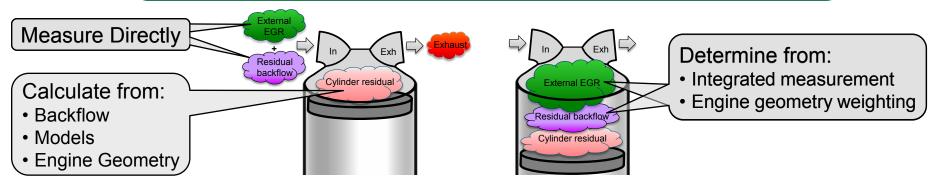
Milestones

2013 Milestones:


- Apply EGR Probe to assess:
 - ✓ Spatiotemporal performance of advanced intake architectures,
 - Performance of numerical-simulation design tools used for development
- Follow-on campaign at Cummins to assess design modification
 - Canceled due to budget sequester
 - Alternate engine work at ORNL to forward CRADA goals
- Improve EGR Probe based on campaign findings:
 - Resolved probe-to-probe variations

2014 Milestone (on schedule for timely completion):

- Specify second laser for quantifying intake & residual-backflow CO₂ (Q1)
 - i.e., external & internal EGR
- \checkmark Assess methods for differentiating intake and residual-backflow CO₂. (Q2)
 - Measure H₂O, Temperature & CO₂
 - Bench-level demonstrate of method for CO₂ differentiation. (Q3)
 - Method assessment for measuring cylinder-residual variations. (Q4)


Global Approach for Improving Energy Security

Develop & apply advanced diagnostics for engine-system characterization to enable: <u>model validation</u>, <u>hardware development</u> & <u>controls</u> for <u>fuel-efficient engines</u>

Detailed Approach for 2014 Objectives

Develop & Apply Advanced Diagnostics to Characterize Cylinder-Charge Variations

- Develop diagnostic to directly characterize backflow & external EGR-Air
 - CO₂, H₂O, Temperature
- Develop procedure to determine net-charge nature from components
 - Directly measure residual backflow & external-EGR-Air
 - Characterize residual from backflow measurements & models
 - Weighted temporal integration to determine net-charge characteristics
- Apply at Cummins to characterize cylinder-charge dynamics
 - Spatial & temporal backflow mapping
 - Assess design tools
 - Assess advanced control strategies for viability & efficiency gains
- Accelerate development of low-cost Clean, Fuel-Efficient & Durable engines

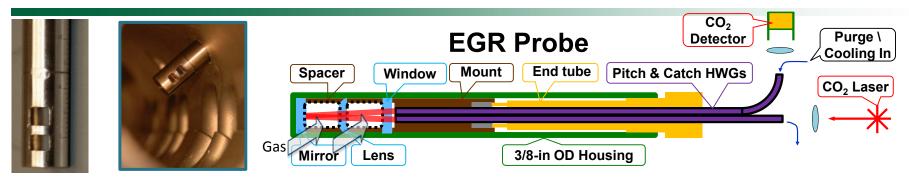
Technical Progress: <u>Summary</u>

- Background: Laser-based Multiplex EGR Probe
 - 4 simultaneous probes faster & more extensive mapping
 - Improved sensitivity, linearity and temporal resolution

Characterizing Charge Components & Fluctuations

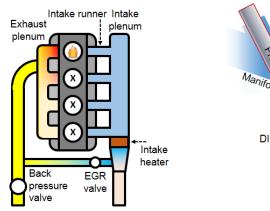
- Directly measure residual backflow & external EGR
- Measurements & models to identify cylinder-residual nature
- Assessing cylinder charge & advanced control strategies
- Developing Multi-Color Multi-Species EGR Probe
 - Measures CO₂, H₂O & Temperature of cylinder-charge components
 - Quantifies both hot (backflow) and cool (external EGR) species
 - Improved characterization of cylinder charge

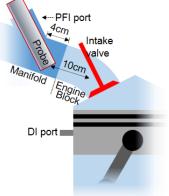
• New EGR Probe Tip for End-On-Flow Orientations


Enables measurements down intake runner behind intake valve

Applications planned for CRADA & SuperTruck projects

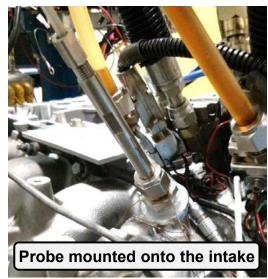
July (SuperTruck) & October (CRADA)


Technical Progress: Backflow Proof-of-Principle Measurements



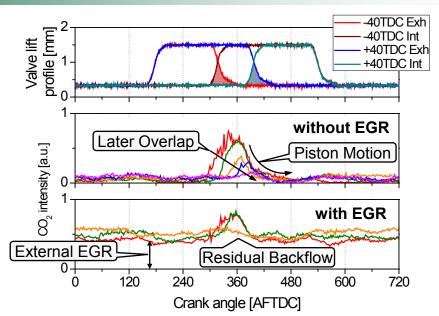
- Single-cylinder Research Engine
 - Modified 2.0L gasoline Ecotec engine
 - Three cylinders disabled
 - Laboratory air handling system

Fully variable valve actuation


- Enables broad residual-backflow variations
- Excellent demonstration capability

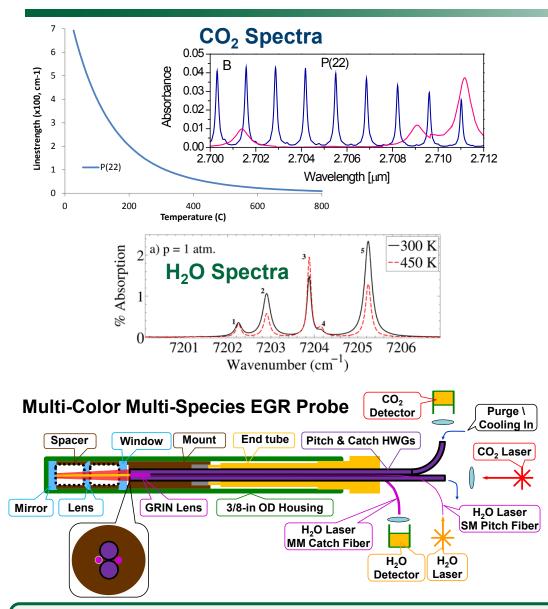


Single-cylinder engine geometry specs


Bore (mm)	86.0
Stroke (mm)	86.0
Compression ratio	11.85
Fuel injection system	Direct injection, side-mounted

Technical Progress: Backflow & EGR Fluctuations Measured

- Backflow varies with overlap timing
 - Piston moving up at 40BTDC
 - Piston moving down at 20BTDC
- Cycle-specific backflow events
 - Varies from cycle to cycle
 - Different CO₂ pulse levels

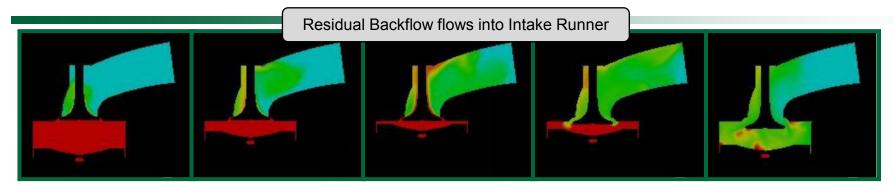


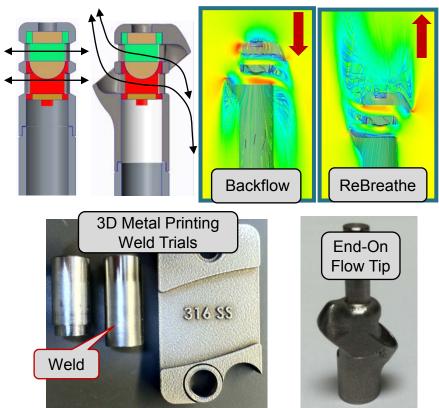
Residual Backflow vs. External EGR

- EGR creates CO₂ baseline
- Backflow creates CO₂ pulse
- Relate backflow to cylinder residual
 - Via heat-transfer & other models
- Integrate Backflow & External EGR
 - Weight by crank-angle displacement

Backflow and External EGR Timing & Magnitude Measured

Technical Progress: Develop Multi-Color Multi-Species EGR Probe




Diagnostic Advances Required

- CO₂ via single P(22) line
 - Absorption \propto [CO₂] & Temp.
 - External EGR: Cool CO₂
 - Will underestimate Hot CO₂
- Need temperature correction
 - Backflow will be hot
- Add H₂O diagnostic
 - 2nd laser scans over 5 lines
 - Lines varying Temp sensitivity
 - Determine [H₂O] & Temp
 - Use T to correct [CO₂]
- Fast CO₂, H₂O & T diagnostic
 - Redundant EGR measures
- Probe modifications required
- July campaign scheduled

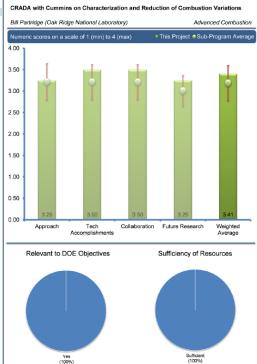
EGR Probe Improvements Enable Cylinder-Charge Characterization

Technical Progress: Develop End-on-Flow EGR Probe Tip

EGR Probe Improvements Required

- EGR Probe designed for cross flow
- Backflow will be end-on flow
 - Probe access is down intake runner
- Modified tip designed
 - Gas cross-flows through probe ducts
- 3D 316SS Metal Printing
 - Enables complex geometry
 - Excellent weld-trial results
- Replaces standard EGR Probe tip
- Led by SuperTruck Partnership

Modified Probe Enables Backflow & External EGR Measurement


Responses to 2013 Review Comments

Numerous Positive Comments:

- "very unique and systematic approach"
- "good approach supporting work to achieve SuperTruck's 55% BTE target"
- "making very good progress"
- "making these measurements in real engine situations is a major accomplishment"
- "very strong collaborative relationship with Cummins"
- "project is very well-defined and planned"
- "This project makes fuel-economy advances via engine-intake improvements a refined engineering possibility"
- "project work supports overall DOE objective on developing advanced fuel efficient engines"

Recommendation:

- "apparently not making this technology available to the other participants in the SuperTruck program"
- "would like to see this project technology be rolled out to other HD engine manufactures"
 - All of the CRADA-developed technologies are available to any organization
 - These include the EGR Probe, SpaciMS, Fuel-in-Oil
 - The CRADA has always shared the diagnostics while keeping certain applications protected
 - Each of these diagnostics has been applied outside the CRADA via funds-in projects
 - The ORNL team is very interested in working with any interested customer
 - This broad availability was specifically mentioned in the 2013AMR presentation
 - Moreover, we have presented EGR Probe applications to the Advanced Combustion and Emission Control (ACEC) Tech Team (1-10-2013), where we communicated the availability of this and other CRADA-developed diagnostics to participating OEMs
 - We will take additional measures to make this broad availability more clear

Collaborations & Coordination with Other Institutions

• Cummins

- CRADA Partner, Sam Geckler (Co-PI)

• Cummins SuperTruck Program (ACE057, Friday 11-11:30am)

- David Koeberlein (PI), Rick Booth
- -ORNL is subcontractor on Cummins' VT SuperTruck project
- Multi-Color EGR Probe scheduled for SuperTruck July 2014
- Cooperative development of Multi-Color Multi-Species EGR Probe
 - End-on-flow tip
 - Harmonic analysis & stiffening of long EGR Probes
- -Coordination of common development interests
- Use of CRADA-developed technologies

University of Central Florida

- Professor Subith S. Vasu & Students
 - Informal collaboration outside VT Program
 - Combined CO-CO₂ probe (see Thurmond presentation)
 - Students at ORNL Aug. & Nov. 2013; June-Aug. 2014

Publications, Presentations and Patents

- 2013 R&D100 Award: Fuel-in-Oil technology
- -2 Patents: re. oil dilution & particulate sensing
- -1 Invention Disclosure: re. Multi-Color EGR Probe
- -6 oral presentations (3 invited)

Remaining Challenges & Barriers, and Proposed Future Work

Remaining Challenges:	Future Work:
 EGR Probe hardware modifications Incorporating optics for H₂O spectroscopy Avoiding resonance with engine harmonics 	 Modify probe to incorporate H₂O & T optics Stiffen Long EGR Probe to avoid vibration In collaboration with SuperTruck team
 Instrument modifications for Multi-Color Multi- Species EGR Probe measurements 	 Modify instrument to incorporate H₂O & Temp. Hardware: laser, multiplex unit, detection Software: control, data acquisition & analysis CO₂ temperature-compensation methods
 Modify instrument for closed-loop control studies 	 Determine analysis speed & accuracy tradeoffs Real-time analysis for control assessment Slower post-analysis for improved accuracy Requirements & tradeoffs to be defined by team
 Applications for advancing engine efficiency EGR & charge uniformity, combustion uniformity Tuning and validating design models Two campaigns at Cummins Technical Center 	 Assess nature of cylinder-charge components Spatial, cyl-to-cyl. & cycto-cyc. uniformity Calibrate simple scavenging model in GTPower Campaigns in July (SuperTruck) & Oct. (CRADA)
 Determining net cylinder charge from component measurements 	 Apply campaign insights to initial development Further development Models linking backflow to cylinder-residual nature Weight factors for backflow & intake charge Temporal (crank angle) integration methods

Summary

Relevance

- CRADA work enables improved cylinder-to-cylinder & cycle-to-cycle combustion uniformity
- This in turn enables DOE goals for improved fuel efficiency and durability

• Approach

- Develop diagnostic to measure spatial & temporal uniformity of cylinder-charge components
- Apply diagnostic to advance engine technology
 - Assess specific hardware architectures
 - Tune, validate & improve design simulation tools (models)
 - Assess closed-loop control strategies & associated efficiency gains

Technical Accomplishments

- Residual-backflow and external EGR measurements demonstrated
- Advanced EGR Probe designed & specified for quantifying backflow & external EGR
- End-on-flow EGR Probe tip designed (in collaboration with SuperTruck project)

Collaborations

- Application of EGR Probe to Cummins' SuperTruck 55% BTE Goals
- EGR Probe design & development work outside VT program with U. Central Florida
- R&D100 Award, numerous presentations and two patents
- EGR Probe available to users outside the CRADA

• Future Work

- Modify EGR Probe for quantifying backflow and external-EGR charge components
- Apply modified probe in CRADA & SuperTruck campaigns to characterize charge uniformity
 - Assess hardware, design models and advanced closed-loop control strategies
- Develop methods for determining net charge nature from backflow & EGR measurements