Alternative High-Performance Motors with Non-Rare Earth Materials

DE-E0005573 DOE Peer Review Presentation

Ayman EL-Refaie, Project Manager & Principal Investigator Frank Johnson, Materials Design Leader

GE Global Research June 18, 2014

imagination at work

This presentation does not contain any proprietary, confidential or otherwise restricted information

Project ID: APE045

Team and stakeholders

Overview

Timeline

- Start: October 1, 2011 (official kickoff with DoE February 7, 2012)
- End: January 31, 2016
- 55% complete (Kickoff meeting Feb. 7, 2012)

Budget

- \$ ~12M total budget
- \$ ~6M DOE share
- \$ ~6M GE cost share

•Funding received from the DoE to date: \$ 3,643,568

imagination at work

Barriers

Very challenging set of specs

- High efficiency over a wide speed and load ranges
- High power density and high coolant inlet temperature
- Low cost targets based on 100,000 units/year
- High speed poses mechanical challenges
- No rare-earth permanent magnets

Partners

- GE Global Research (lead)
- GE Power Conversion/GE Licensing
- University of Wisconsin-Madison
- North Carolina State
 University
- University of Akron

- ORNL
- NREL
- McCleer Power
- Ames National Lab
 - Arnold Magnetics

The Problem

- The specifications for hybrid vehicle motors are challenging in terms of power density, efficiency and cost. This requires a comprehensive approach to advance the state of the art, including novel concepts to push past barriers.
- High speed is key to high power density
- High speed leads to higher electrical frequency
- Higher stator core and rotor losses
- On top of all these challenges, eliminating rareearth permanent magnets makes the problem an order of magnitude more challenging

Project Objective (FY14/FY15)

Items	Specification				
Max. Speed	14,000rpm				
Peak Power	55kW @ 20% speed for 18sec				
Maximum Current	400Arms				
Cont. Power	30kW @ 20~100% speed @ Vdc=325				
Efficiency	Refer to target efficiency map				
Operating Voltage	200~450V (325V nominal)				
Back EMF	<600Vpk line-to-line @ 100% speed				
Torque Pulsation	<5% of Peak Torque @ any speed				
Characteristic Current	< Maximum Current				
Weight	≤35kg				
Volume	≤9.7L				
Cost @100k	≤\$275				
Ambient (outside housing) Operating Temperature	-40~140°C				
Coolant inlet	105°C, <10LPM, 2psi drop, <20psi inlet				
Minimum isolation impedance-phase terminal to GND	1Mohm				

- Finish build and testing of the downselected 3 motor prototypes
- Down-select and build/test final 55kWpk non-rare earth motor to meet DOE specifications

Figure 1. Motor Efficiency Targets

Relevance

Developing a low-cost, high-performance advanced traction motor is a key enabler to meeting the 2020 technical targets for the electric traction system. Elimination of rare-earth permanent magnets is very strategic in terms of eliminating the uncertainty regarding sustainability of rare-earth magnets

	2010 ^a	2015 ^b	2020 ^b
Cost, \$/kW	<19	<12	<8
Specific power, kW/kg	>1.06	>1.2	>1.4
Power density, kW/L	>2.6	>3.5	>4.0
Efficiency (10%-100% speed at 20% rated torque)	>90%	>93%	>94%

Table 1.	Technical	Targets for	Electric	Traction	System
----------	-----------	-------------	----------	----------	--------

^aBased on a coolant with a maximum temperature of 90°C.

^b Based on air or a coolant with a maximum temperature of 105°C.

^c A cost target for an on-board charger will be developed and is expected to be available in 2010.

Project Uniqueness and Impacts

- The project proposes a very comprehensive approach in terms of identifying the technologies that will meet the required performance
- The project will explore various motor topologies; some include no magnets at all and some include non-rare earth magnets
- Some of the motor topologies use only conventional materials while others will be enabled by advanced materials that will be developed under the project
- Advanced materials including magnetic as well as electrical insulating materials will be developed to enable the motors to meet the required set of specifications
- Advanced motor controls and thermal management techniques will also be developed.
- By evaluating the wide range of motor topologies and advanced materials, down-selected topologies/materials are expected to meet the required set of specifications

Approach

- Perform tradeoff study of various motor topologies (≈10 topologies: some use conventional materials while others will be enabled by new materials)
- Identify promising scalable materials and produce coupons showing the expected properties (1 hard magnetic, 2 soft magnetic, 1 dielectric)
- Down-select promising topologies/materials
- Design/build/test 2-3 proof-of-principle motors
- Down-select final motor topology
- Design/build/test 3 identical motors as the key project deliverable(s)
- Develop cost model for the final motor

FY14/15 Approach and Milestones

Go No/Go Decision Point:

Challenges/Barriers:

The key go no/go decision point will be after the 3 down-selected motor prototypes are built and tested to determine based on test results how do they compare to the baseline IPM with rare-earth magnets. The set of specifications is very challenging and eliminating rare-earth permanent magnets is a big hit in terms of torque density and efficiency

Accomplishments to Date 9 patent applications with several others pending

Motor accomplishments:

- Continue to evaluate more motor topologies (more than 10 evaluated so far)
- Down-selected the first 2 topologies while the third is still under evaluation:
 - First prototype has reduced rare-earth content (built and currently being tested)
 - Second has non-rare earth magnets (built and currently being tested)
 - Third prototype has no magnets (down-select topology, build and test in FY14)
- Identified the theoretical properties for the advanced materials to be developed and quantified their impact on some of the motor topologies

Materials accomplishments:

- High temperature (>250 °C) slot-liner insulation ready for scale-up
- Demonstrated GE-synthesized non-rare-earth permanent magnets with Hci > 2.0 kOe
- Developed method for locally patterning non-magnetic regions on motor lams with < 100 μm interface widths that are stable > 5000 hours at 180 °C
- Discontinued efforts to develop higher-strength silicon steel laminates due to high core loss
- Performed initial studies on scalability of new materials for sub-scale prototype motor builds.

First Motor Prototype (Dy-free magnets)

Stator

Prototype build finished and testing is underway

Tested Machine Performance

Discrepancy due to 3D effect (accounted for in design stage to achieve required torque) Machine able to provide 200Nm Peak Torque at Max Current (requirement is 187.6Nm)

Speed [RPM]	Irms Ref.	Gamma Ref.	Speed [RPM]	Torque [N-m]	Pm [kW]	Pmot [kW]	Eff [%]	Vph [Vrms]	VII [Vrms]	lph [Arms]	PF	Loss [kW]
2800	224.7	10.00	2800	131.9	38.67	40.89	94.6	71.4	123.7	230.7	0.828	2.22
5600	108.2	2.00	5600	61.8	36.23	38.76	93.5	116.4	201.5	111.8	0.993	2.53

Second Motor Prototype (Ferrite magnets)

Stator

Rotor

Prototype build finished and testing is underway

Sample Measured Performance at 3500 rpm

Materials accomplishments

Advanced processing of nonrare-earth permanent magnets

Dual-phase motor laminates with locally patterned low μ regions for flux path control

High temperature slot-liner insulation

Remaining Challenges and Barriers

- Successful testing of the 3 motor prototypes in 2014 and confirming that their performance is close to predictions
- This will guide the down-selection of the final motor concept
- Developing the advanced materials with the required properties
- Being able to scale the materials up in time for the final motor build and test

Collaborations

Motor Development:

- North Carolina State University: Evaluation of motor topologies
- University of Akron: Evaluation of motor topologies
- University of Wisconsin: Evaluation of motor topologies
- NREL: Evaluation of thermal management schemes
- ORNL: Evaluation of motor topologies and materials

Materials Development:

- Ames Laboratory: High resolution microscopy of magnetic materials
- Arnold Magnetic Technologies: Specialized magnetic material processing and characterization

Proposed Work Beyond FY13 FY14

- Finish test proof-of-principle motors/materials
- Final selection of motor topology/materials based on test results of proof-of-principle motors
- Scaled manufacturing of selected materials
 FY15
- Down-select, build and test final motor
- Scaled manufacturing of selected materials

Summary

- Significant progress made since last year
- •More than 10 motor topologies fully evaluated
- •9 filed patent applications with several others pending
- •First motor prototype using Dy-free magnets built and currently being tested
- •Second motor prototype using ferrite magnets built and currently being tested
- •3 topologies with no magnets are currently under evaluation to down-select the third motor prototype that will be built and tested in 2014
- •Test coupons of advanced motor materials have been manufactured and characterized
- •Scalable manufacturing methods for advanced materials have been identified
- •Improved performance has been quantified in soft magnetic laminates and high temperature insulation

imagination at work

