

Advanced Technology Vehicle Lab Benchmarking – Level 1

2014 U.S. DOE Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Kevin Stutenberg - Principal Investigator

Argonne National Laboratory June 17, 2014

THE OF THE

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Project ID # VSS030

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Benchmarking at ANL started in 1998
- FY13 & FY14 Completed Testing:
 - 10 vehicles tested in FY13, 4 in FY14
 - Thermal impact study
 - Conventional vehicle study
- FY14 and FY15 Test Vehicles
 - See Milestone on slide 6

Budget

- FY2013 \$1,300k
- FY2014 \$1,480k
- Other Leveraged DOE Projects (separate funding): Codes and Standards test support, Thermal Impact Evaluations

- **DOE VSST barriers addressed:**
 - Computational Models, Design and Simulation Methodologies (C)
 - Model development and validation
 - Lack of Standardized Testing Protocols (D)
 - Validating BEV and PHEV test procedures
 - Support of SAE committee (J2951 Drive Metrics, J2907/2908 Powertrain rating, J2263 Coast Down, etc...)
 - Constant Advances in Technology (F)
 - Public data generation from benchmarking recent mass-produced BEVs and PHEVs.
 - Advances in HEVs and Alt Fueled Vehicles compared to previous models
- Partners:
 - AVTA (Advanced Vehicle Testing Activity):
 DOE, INL, ANL, Intertek
 - DOE, National Laboratories, USDrive, OEMs, Suppliers, Vehicle Competitions

<u>Relevance:</u> Objectives of the Advanced Powertrain Research Facility (APRF)

Benchmark Objective

"Provide to DOE and Partners the Best Advanced Vehicle Test Data and Analysis"

Codes and Standards Objective

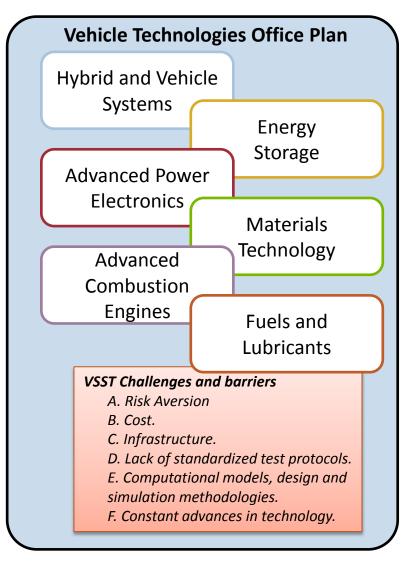
"Assist in codes and standards development with public and independent research and data"

Laboratory Testing Mission

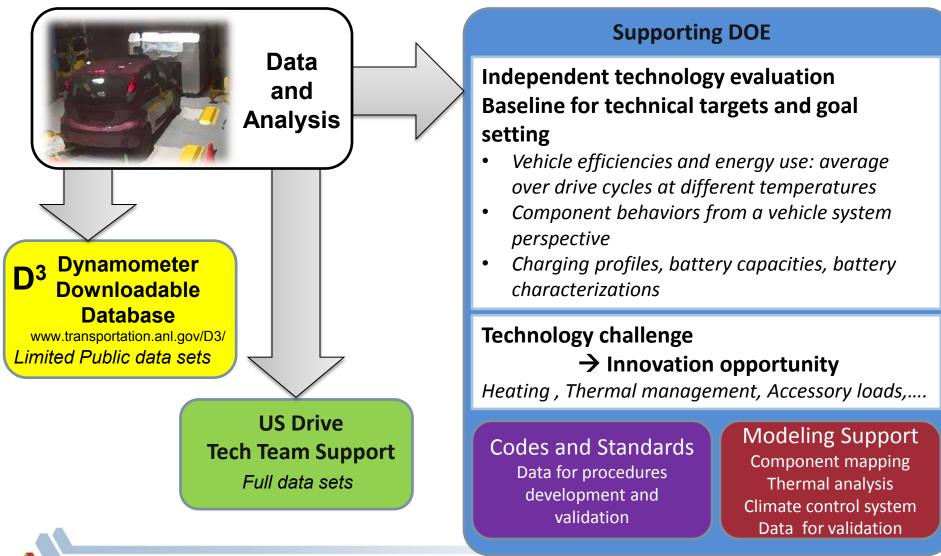
Enable petroleum displacement through technology assessment & data dissemination

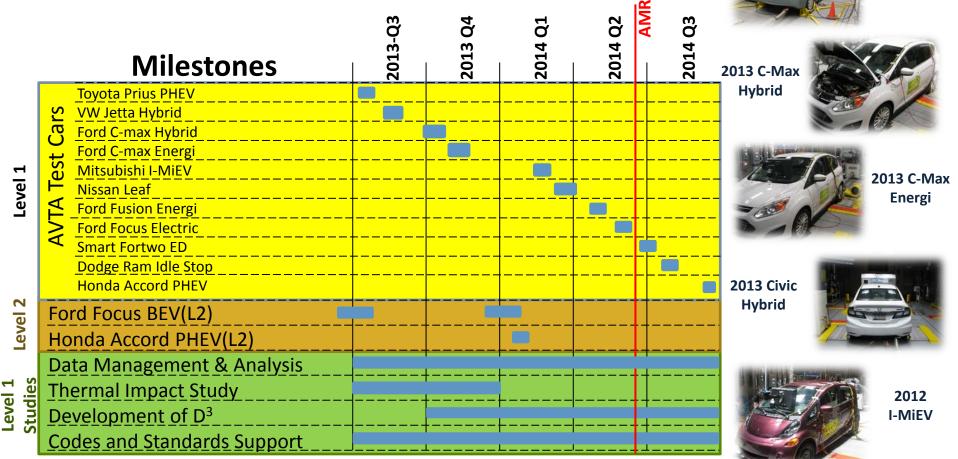
- Establish the state-of-the-art automotive technology baseline for powertrain systems and components through test data generation and analysis
- Provide independent and public data for evaluation of emerging technology
- Generate data to support model creation and validation, standards development, and DOE target setting

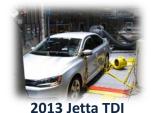
Focus for FY14


- Establish technology benchmarks for HEV, PHEV, BEV, Conventional and Alternative Fuel Vehicles.
- Development of data management and analysis tools for quicker data distribution
- Evaluation of thermal effects on energy consumption and powertrain behavior

<u>Relevance:</u> Advanced Technology Benchmark-Matching Technology to Targets


- Vehicle Research: Dynamometer Testing
 - Vehicle system testing
 - Energy consumption (fuel + electricity)
 - Emissions
 - Performance
 - Vehicle operation and powertrain strategy
 - 'In-situ' component and system testing
 - Component performance, efficiency and operation over drive cycles
 - Component mapping
 - Technology assessment and goal setting




<u>Relevance:</u> Purpose and Destination of Vehicle Testing and Analysis

"Knowing how good you are requires an accurate picture of how good everybody else is"

<u>Milestones:</u> ARPF- Providing Data for a Wide Variety of Vehicle Technologies

2013 Civic CNG

2013 Volt

2013 Malibu Eco

2013 Jetta Hybrid

2013 Prius

PHEV

2013 Leaf

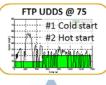
Approach: Well-Established and Proficient Testing Methods Adjusted to Individual Technologies

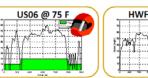
The vehicle benchmark activity has been refined during the past decade, which has resulted in:

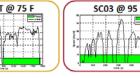

- Advanced and unique facilities and instrumentation
- Continuous improvement of testing procedures
- Standardization of test plans including instrumentation and drive cycles which are adjusted for individual vehicles
- Significant knowledge of advanced vehicles and testing methods

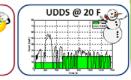
APRF expertise in testing **Powertrains**

- Conventional
- Hybrid Electric (HEV)
- Plug-in HEV (PHEV)
- Battery Electric (BEV or EV)
- Fuel Cell Vehicle

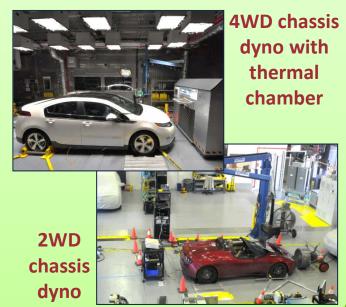

Alternative fuels


- Hydrogen, Natural Gas
- Ethanol. Butanol
- Diesel (Bio, Fisher-Tropsch)



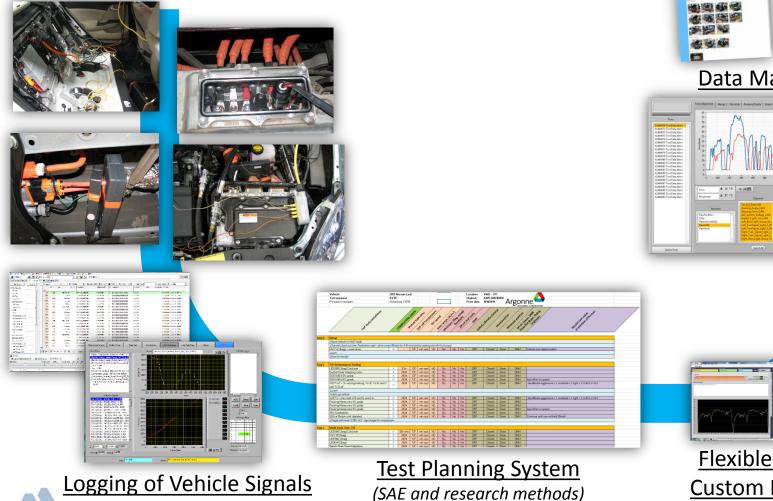

<u>Approach:</u> Purpose Built Research Laboratory for Automotive Benchmark Activities

- Level 1 testing: Basic and comprehensive instrumentation
 - Level 1 = non-intrusive instrumentation
 - Vehicle characterization (fuel and energy consumption, emissions, performance)
 - Vehicle operation and strategy
 - Component specific instrumentation for analysis and modeling (speed, temp, and other technology specific removable instrumentation)
- Drive cycles and test conditions
 - Standard drive cycles, technology specific cycles, performance tests, vehicle and component mapping cycles
 - Thermal test conditions: 20°F, 72°F and 95°F with 850 W/m² radiant solar energy "5-Cycle"
 - Additional testing at 0°F and 40 °F as desired



Advanced Powertrain Research Facility

The right tools for the task:

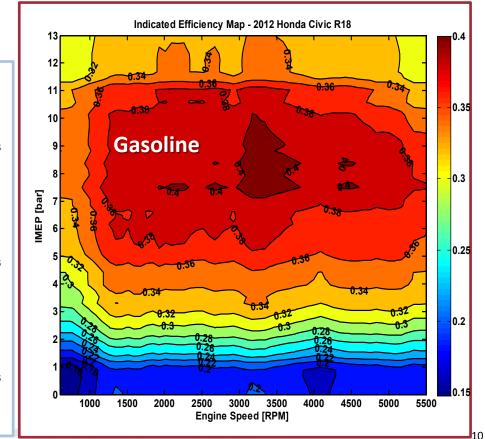

- Two chassis dynamometer cells
- Custom DAQ, flexible, moduledriven, used in both cells
- Thermal chamber which is 5-Cycle compliant (+)

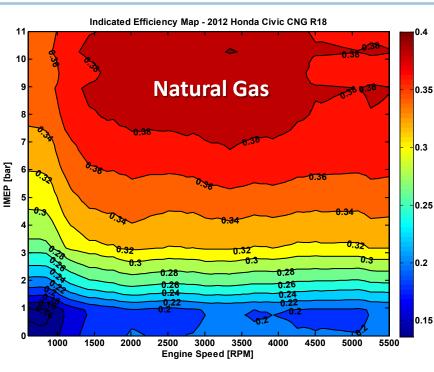
Accomplishments: Revised Instrumentation, Testing, and Data Management

Non-Invasive Vehicle

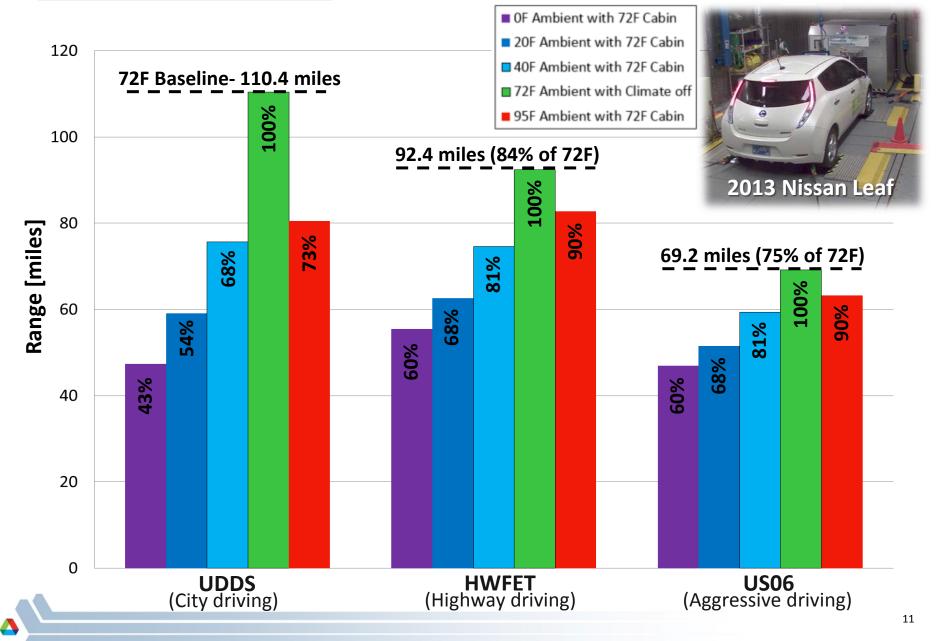
Instrumentation

Data Managemen Flexible Testing with Custom Modular DAQ 9

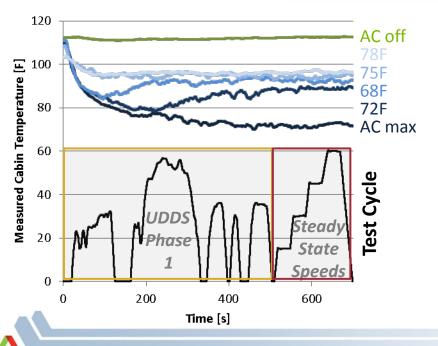

Data

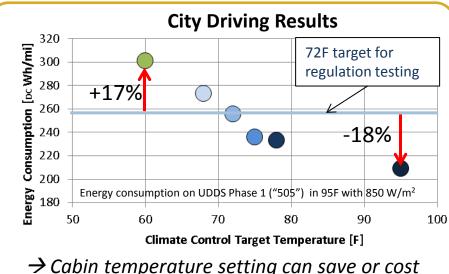

Dissemination

Accomplishments: CNG vs Gasoline Engine Comparison through Indicated Efficiency

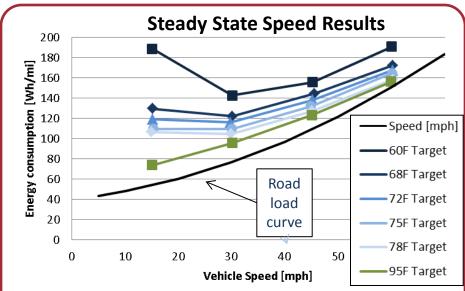

	CNG	Gasoline
UDDS FE	31.9 mpgge	34.8 mpg
Highway FE	49.5 mpgge	53.4 mpg
US06 FE	31.2 mpgge	32.7 mpg
0-80 mph	23.1 s	18.3 s

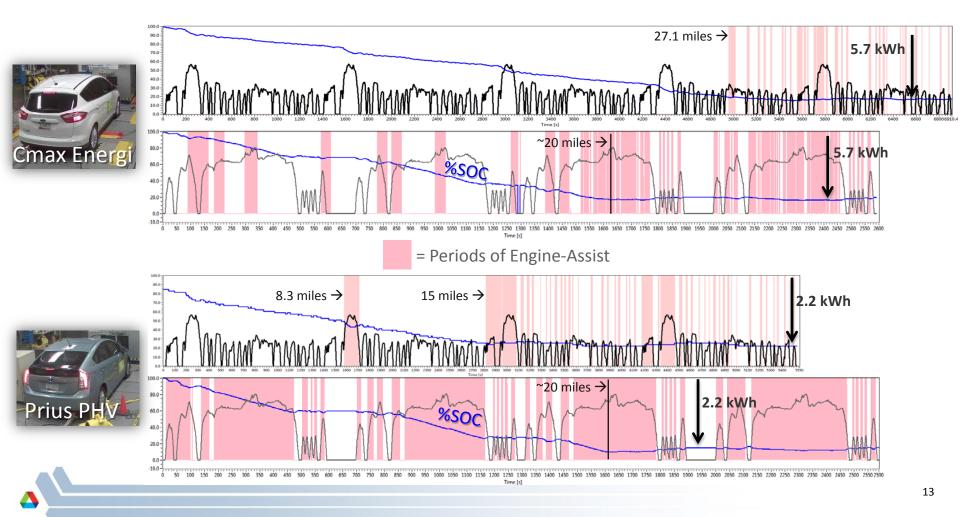
Accomplishments: Temperature Effects on BEV Range




Accomplishments: Effect of Climate Control Setting on Consumption on "Sunny" 95F Day

Test Setup:

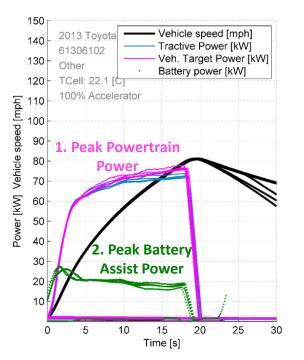

2014 Ford Cmax Energi Charge depleting mode 95F with 850 W/m²


almost 20% in city driving on a hot day

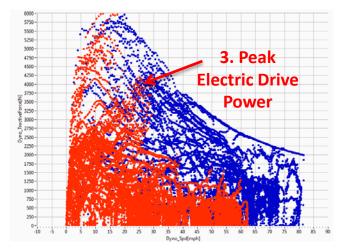
→ Use the AC at high speeds, but at low speeds the AC power outweighs the powertrain power

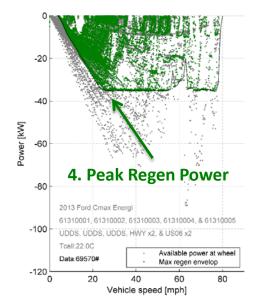
Accomplishments: "Blended" PHEV Fuel Displacement Varies Heavily on Design and Controls

- Both vehicles can drive a UDDS cycle in electric mode, but not the aggressive US06 cycle
- EV power capability limits quick discharge of on-board battery energy, which limits fuel displacement

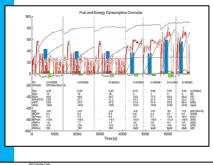


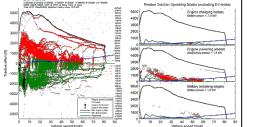
Accomplishments: Assist in Codes and Standards

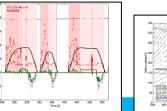

Level 1 Argonne Benchmarking Tests Are Prototypes for Power Rating Procedures (SAE J2908)

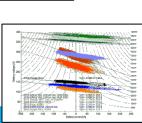


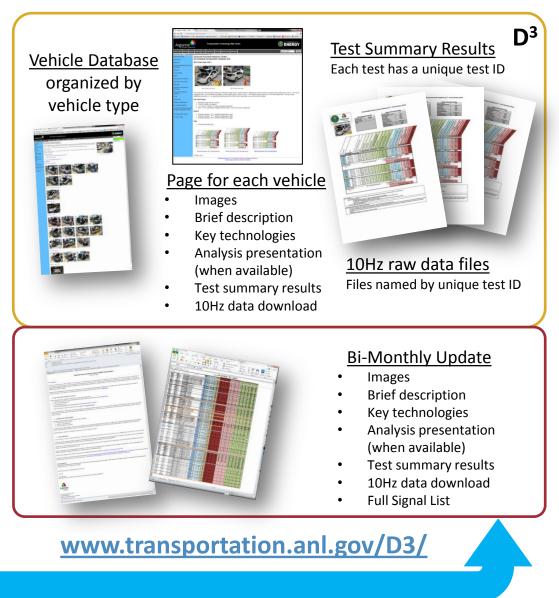
Four (4) different power ratings considered in SAE J2908, they are:

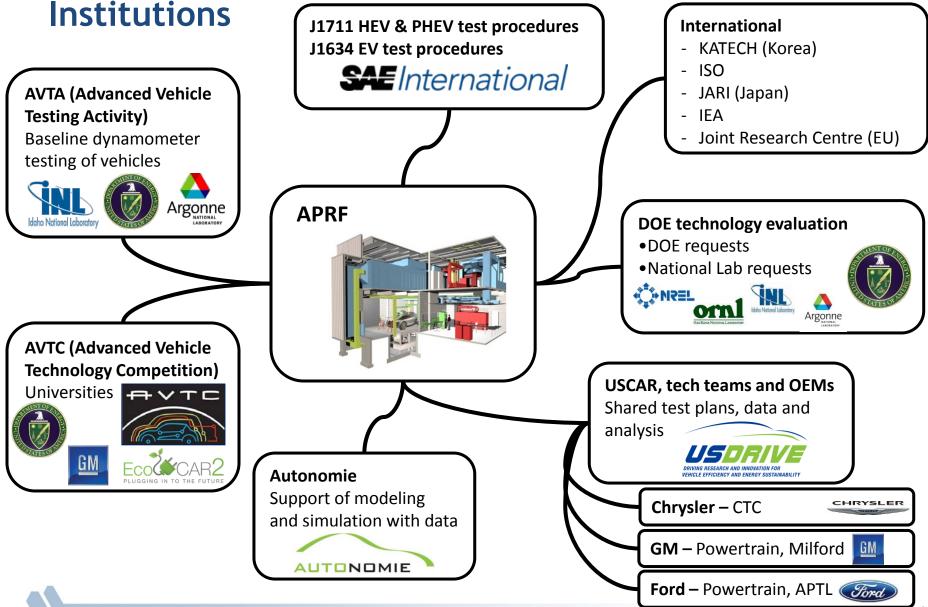





Accomplishments: Data Analysis and Reporting


Data Management Tool





Analysis and Reporting Tools

<u>Coordination:</u> Existing Collaborations with Other

Proposed Future Work: Level 1 Benchmark Will Continue with Emphasis on Thermal Testing

AVTA Vehicles (as of Apr 2014):

- 2014 Ford Fusion Energi
- 2013 Ford Focus BEV
- 2014 Smart EV
- 2014 Dodge RAM Start/Stop + 8 spd
 - Future CNG conversion
 - Enhanced Lead-Acid Battery modification
- 2014 Honda Accord PHEV
- Further potential AVTA vehicles:
 - 2015 Mazda6 i-ELoop / Mazda6 Diesel
 - 2015 Chevrolet Cruze Diesel
 - 2015 Mitsubishi Outlander PHEV
 - 2015 Audi A3 e-tron PHEV
 - 2015 BMW i3 EV / BMW i3 Range Extender
 - 2015 Chevrolet Spark EV
 - 2014 Chevrolet Impala Bi-fuel

2012 Mitsubishi i-MEV

- **Completed** AVTA Baseline
- SAE J1634 Shortcut Validation with Robot Driver

2013 Nissan Leaf

- Completed AVTA Baseline
- Thermal testing with heat pump

Other Level 1 Vehicles

- 2015 Via VTRUX Van PHEV
- CVT vehicle Rental probably 2014 Nissan Altima

Level 2 Vehicles + ANL Vehicles

- 2013 Ford Focus BEV retest
- 2014 Honda Accord PHEV
- 2013 VW Passat EcoBoost CNG bi-fuel
- 2014 Jeep Cherokee Thermal research collaboration with Chrysler

Summary

- Level 1 Benchmark Activity continues to provide precise laboratory test data for a wide range of vehicle technologies that address DOE goals
 - Establish the state-of-the-art automotive technology baseline for powertrain systems and components through data collection and analysis
 - Providing independent evaluation of technology and support for DOE target setting
 - Generating test data for model development and validation to encourage speed-to-market of advanced technologies
 - Supporting codes and standards development for unbiased technology weighting

Accomplishments from Level 1 testing

- Refined data management, analysis, and reporting capabilities
- Continued evaluation of thermal impact on energy consumption and powertrain operation of conventional, alt fuel, and electrified vehicle technologies
- AVTA vehicle testing in-progress in collaboration with INL
- Test results and raw data available publicly at the Downloadable Dynamometer Database website (<u>http://www.transportation.anl.gov/D3/</u>)
- Enhanced signal and testing lists available to OEM & DOE Partners
- Continued Link to Industry is an important component of vehicle testing
 - Sharing best test practices, facility hardware recommendations, data analysis methods
 - Industry technology experts provide insight into what data is of interest, assisting in testing direction

Technical Back-Up Slides

Argonne Argonne **4WD Chassis Dynamometer Thermal Test Cell**

"Research and Data Driven Lab" "Independent Public Data"

• Test cell features

- ✓ 4WD chassis dynamometer
 - Variable wheel base (180inches max)
 - 250 hp/axle
 - 300 to 12,000 lbs.. inertia emulation
- Radiant sun energy emulation 850W/m² (adjustable)
- ✓ Variable speed cooling fan (0−62mph)
- ✓ Gaseous fuel and hydrogen capable
- ✓ Diesel: Dilution tunnel, PM, HFID
- Thermal chamber
- ✓ EPA 5 cycle capable (20°F, 72°F and 95°F + 850W/m² solar load)
- ✓ Demonstrated as low as 0°F
- Intermediate temperatures possible

- Research aspects
- Modular and custom DAQ with real time data display
- Process water available for cooling of experiment components
- ✓ Available power in test cell
 480VAC @ 200A
 - 208VAC @ 100A
- ✓ ABC 170 Power supply capable to emulate electric vehicle battery
- ✓ Custom Robot Driver with adaptive learning
- Several vehicle tie downs
 chains, low profile, rigid,...
- 2, 3 and 4 wheel vehicle capable
- ✓ Expertise in testing hybrid and plugin hybrid electric vehicles, battery electric vehicles and alternative fuel vehicles

Special instrumentation

- High precision power analyzers (testing and charging)
- CAN decoding and recording
- ✓ OCR scan tool recording
- ✓ Direct Fuel Flow metering
- ✓ Infra Red Temperature camera
- In cylinder pressure indicating systems
- In-situ torque sensor measurement
- ✓ 5 gas emissions dilute bench with CVS (modal and bag emissions analysis)
- ✓ FTIR, Mobile Emissions unit
- Raw and Fast HC and NOx bench
- Aldehyde bench for alcohol fuels

Advanced Powertrain Research Facility 2WD Chassis Dynamometer

"Research and Data Driven Lab" "Independent Public Data"

• Test cell features

- ✓ 2WD Light Duty / Medium Duty chassis dynamometer 200 ba
 - 300 hp
- 300 to 14,000 lbs.. inertia emulation
- 10,000 lbs.. max weight driven axle
- ✓ Multiple cooling fans available
- ✓ Vehicle lift (max 10,000 lbs..)
- Remotely located control room with conference area

• Research aspects

- Modular and custom DAQ with real time data display
- ✓ Flexible to adopt any drive cycle
- ✓ Available power in test cell
 - 480VAC @ 200A & 100A
 - 208VAC @ 50A, 30A & 20A x3
- ✓ ABC 170 power supply capable to emulate electric vehicle battery
- ✓ Custom Robot Driver with adaptive learning
- Expertise in testing hybrid and plug-in hybrid electric vehicles, battery electric vehicles and alternative fuel vehicles

APRE (Assonced Powertrain Research Fadility)

Special instrumentation

- High precision power analyzers (testing and charging)
- ✓ CAN decoding and recording
- ✓ OCR scan tool recording
- ✓ Direct Fuel Flow metering
- ✓ Infra Red Temperature camera
- In cylinder pressure indicating systems
- In-situ torque sensor measurement
- SEMTECH-DS (Mobile Emissions unit) with AVL DVE mass flow sensor