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Overview 
Timeline 
• Project start – May 2012 
• On-going 
 
Budget 
• FY2012 – $250k 
• FY2013 – $400k 

Barriers 
• Directly targets barriers identified in the VTO 

Multi-year Program Plan 
– “Lack of fundamental knowledge of advanced 

engine combustion regimes” 
– “Lack of modeling capability for combustion and 

emission control” 

Partners 
• Leveraging DOE Office of Science funding for 

Oak Ridge Leadership Computing Facility (OLCF) 
• Two on-going efforts with direct industry 

involvement 
• Combustion stability 

– Ford Motor Company 
– Convergent Science, Inc. 

• Injector design optimization 
– General Motors 
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Objectives / Relevance 
• Support accelerated development of advanced IC engines to meet future fuel 

economy and emissions goals 
– Develop and apply innovative strategies to maximize benefits of predictive simulation 

tools and high performance computing (HPC)  
• Increase computational efficiency through parallelization, automation, and optimization 
• Reduce clock time from Months to Weeks 

– Couples ORNL’s leadership role in HPC and computational sciences with experimental 
and modeling expertise in engine and emissions-control technologies 

– Addresses technology barriers of specific interest to DOE and industry partners  
• Two ongoing efforts – combustion stability and injector design optimization 
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Approach 
Combustion stability – Ford Motor Company and Convergent Science, Inc. 
• Understand the stochastic and deterministic processes driving cycle-to-cycle 

variability in dilute SI engines 
– Large-Eddy Simulation (LES) combustion and kinetics using CONVERGE™ 
– Novel statistical approach to parallel simulation of serial phenomena 
– Development of low-order metamodels which preserve the knowledge of the LES 

model but greatly reduce computational time for serial simulations 
 

Injector design optimization – General Motors 
• Understand and optimize the design of GDI fuel injectors for improved 

efficiency and reduced emissions 
– OpenFOAM® CFD model of internal nozzle flow developed by GM 
– Development of framework code to drastically accelerate (4-40x) the workflow 

process and reduce the number of manual decisions and inputs 
• Automate creation and launching of simulation jobs 
• Optimization routines (such as genetic algorithms) to direct design selection  
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Milestones 
 Allocated 3.1 Mhr on ORNL HPC resources evenly split between tasks – July 2012 

 
Combustion stability – Ford Motor Company and Convergent Science, Inc. 
 CONVERGE™ ported to ORNL HPC resources – Aug 2012 
 Demonstrated metamodel strategy on simple combustion model and published results 

– Aug/Nov 2012 
 Received non-proprietary geometry model from Ford, performed initial RANS test runs 

with CONVERGE™ – Sept-Oct 2012 
– Demonstrate and verify LES simulation capabilities – in progress (as of Mar 2013) 
– Apply metamodel strategy to LES model on Titan – target Sept 2013, on track 

 
Injector design optimization – General Motors 
 OpenFOAM® ported to ORNL HPC resources – Aug 2012 
 Develop computation framework to automate massive parameter sweeps with injector 

simulations – Feb 2013 
– Employ OpenFOAM® model within computation framework on Titan – target Sept 

2013, on track 
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Technical accomplishments 
• Combustion stability 
• Injector design optimization  
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Parallelization of a serial problem 
• Detailed, serial simulation of 100s or 1000s of cycles required for statistical 

analysis of instabilities is time-preventative… even on Titan 
• Novel statistics-based parallel approach: 

– Many parallel, single- (or few-)cycle simulations at a global operating point 
– Experimental data seeds statistical distribution of initial conditions 
– Iterate until initial condition distribution matches next-cycle model predictions 
– Creates single-cycle “building blocks” which could be used to construct a serial event 

… 

Construction of serial events from 
parallel simulations 
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Low-order metamodels for multi-cycle simulations 
• Low-order metamodel (model of a 

model) constructed from CFD results 
– Retains knowledge of the full LES 

model’s physics 
– Capable of 1000s of serial simulations in 

negligible clock time 
• Uncertainty Quantification (UQ) 

approach using ORNL’s TASMANIAN 
algorithm 

• Metamodels used to exhaustively 
explore impact of key system 
parameters on combustion variability 

TASMANIAN 
Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN 

Developed at ORNL with funding from the Advanced Scientific Computing Research (ASCR) Program 
of the DOE Office of Science 
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Development strategy for TASMANIAN metamodels 
• Adaptive sparse grid sampling 

minimizes the required number 
of fully detailed cycle simulations 

• Detailed model generates 
responses for each key parameter 
(e.g., fueling parameter β) at 
each operating point 

• Stochastic collocation generates a 
functional response map 
(metamodel) 

• Metamodel preserves the 
dominant responses of the 
detailed model but greatly 
reduces computational time for 
extended multi-cycle simulations 

Monte Carlo (Q >> 106) Sparse Grid (Q ~ 104) Adaptive Sparse Grid (Q ~ 102) 

Detailed model response for β 
at sparse grid points 

Adaptive sparse grid points 

Response map for β 
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Proof of concept using simple engine model 
• Method applied to a simple SI engine model with 

cycle-to-cycle feedback 
– 0-D, single-zone with prescribed (Wiebe) combustion 
– Combustion efficiency variation with dilution based 

on experimental observations and percolation theory 
– 8 parameters:   

• No feedback:  SOC, φ, Wiebe exponent (m) 
• With cycle feedback:  Fueling parameters (α and β), 

residual fraction and temperature, molar charge at IVC 

φ = 0.8 
Stochastic effects dominate 

φ = 0.7 
Deterministic effects dominate 

• Finney, et al. 2012 International Conference on Theory and Applications of Nonlinear Dynamics (ICAND).   
• Webster, et al. 2013 SIAM Computational Science and Engineering Conference. 

Metamodel 

Simple Model 

Projection of other 7 parameters 

Projection of other 7 parameters 

Metamodel captures steepness of 
response map with limited residual 

error (seen here as “wrinkles”) 
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Metamodel 

Symbol statistics reveal metamodel retains the key physics of the original model. 
Residual fuel effects begin to dominate as the lean stability limit is approached. 
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Initial model results with CONVERGE™ 
• Initial runs with RANS to 

validate the model 
• Example results show impact 

of dilution on combustion 
performance 
– Near stoichiometric full burn 
– Lean (φ≈0.8) partial burn 

• Working closely with 
Convergent Science, Inc. to 
validate LES simulations 

Special thanks to Daniel Lee at Convergent Science, Inc. 
for his help creating the movies in EnSight from our data 
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Future work 
Remainder of FY2013 
• Continue to demonstrate and verify LES simulation capabilities 
• Develop metamodel with input from LES model simulations on Titan 
FY2014 
• Refine and exercise the metamodel to identify and understand impact of 

engine parameters which promote combustion instability 
• Examine strategies to mitigate instability by directed design changes 



13 Edwards – ACE017 

Technical accomplishments 
• Combustion stability 
• Injector design optimization  
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Automating the GDI injector design optimization process 

Generate CAD from 
parametric 
representation of nozzle 

Generate Mesh 

Simulation 

Figure reference:  Neroorkar, Mitcham, Plazas, Grover, Schmidt, “Simulations and Analysis 
of Fuel Flow in an Injector Including Transient Needle Effects”, ILASS-Americas 24th Annual 
Conference on Liquid Atomization and Spray Systems, San Antonio, TX, May 2012. 

• Enable thorough investigation of operational and geometric design spaces with 
massively parallel simulations 
– Replace labor-intensive, manual generation of models for each design iteration 
– Computational framework to handle…  

• Selection of initial design parameters 
• Generation of CAD model 
• Meshing 
• Simulation 
• Optimization for next iterate 

• Acceleration of learning 
– Months ⇒ Weeks 

Used with permission of General Motors 

• Spray models validated against 
comprehensive experimental 
database 
– Test matrix includes flash 

boiling 
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Multi-year, phased approach 

Python-based Framework 
(             Phase 2 & 3 ) Manipulate the injector 

CAD model parametrically 
 Generic CAD Template 

Manipulate Key 
Geometric Parameters 

Create New CAD File 

Optimizer 

Coupling to  
STAR-CD/CONVERGE 
for in-cylinder mixing 

and combustion 

Run Engine 
Simulation 

Operating 
parameter 

sweeps and 
optimization 

Generate model from CAD 
 

Mesh with STAR-CCM+ 

Convert mesh to 
OpenFOAM format 

Create OpenFOAM 
injector model 

• Phase 1 – Framework development and validation (FY2013) 
– Python-based computational framework (based on the Fusion IPS framework) 

• Injector flow models provided by General Motors 
• OpenFOAM® CFD software coupled with STAR-CCM+ for meshing 
• DAKOTA optimization package from Sandia National Laboratory 

– Validate internal flow models with available spray-vessel data 
• Phase 2 – Coupling of internal nozzle flow to external spray codes (FY2013) 

– Coupling with STAR-CD and/or CONVERGE™ for downstream flow evolution 
– Validate full spray predictions with available experimental measurements 

• Phase 3 – Geometry optimization with coupled combustion (FY2014) 
– Parametric CAD geometry template to enable automated design variation 
– Fully coupled codes for in-cylinder engine simulations 
– Optimization of injector hole pattern design for fuel economy and emissions 
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Future Work 
Remainder of FY2013 
• Verify and refine computational framework 
• Validate internal flow models with available spray vessel data 

– Operating parameter sweeps (fuel T, P, and composition) 
– 5000-10,000 core job on Titan 

• Couple with STAR-CD and/or CONVERGE™ for downstream spray evolution 
– Validate with available experimental measurements 

FY 2014 
• Fully coupled model for in-cylinder simulations with combustion 
• Automated optimization of injector geometry for best fuel economy and 

lowest emissions 
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Collaborations 
• Efforts supported through the OLCF user facility agreement 

– Each effort involves pre-competitive and proprietary aspects 
• Leveraging DOE funds 

– EERE, Vehicle Technologies Office 
• Support for pre-competitive efforts 

– Office of Science, Advanced Scientific Computing Research (ASCR) Program 
• OLCF user facility and its HPC resources (e.g., Titan) 
• TASMANIAN  

• Ford Motor Company 
– Brad VanDerWege 
– James Yi 

• General Motors 
– Ron Grover 
– Tang-Wei Kuo 
– Kshitij Neroorkar 

• Convergent Science, Inc. 
– Daniel Lee 
– Keith Richards 
– Eric Pomraning 

• Oak Ridge Leadership Computing Facility (OLCF) 
– Suzy Tichenor 
– Jack Wells 

• Oak Ridge National Laboratory 
– Wael Elwasif 
– Srdjan Simunovic 
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Summary 
• Relevance 

– Innovative use of HPC predictive simulation to accelerate IC engine development to 
meet future efficiency and emissions goals 

• Approach 
– HPC CFD and metamodel simulations to understand the stochastic and deterministic 

processes driving cycle-to-cycle variability in dilute SI engines 
– Automation and optimization of HPC CFD simulations to greatly accelerate GDI fuel 

injector design process 
• Technical Accomplishments 

– Metamodel approach demonstrated with simple model, LES simulations in progress 
– Automation and optimization framework developed, parameter sweeps pending 

• Collaborations 
– Two ongoing efforts with direct industry involvement (Ford, GM, Convergent Science) 

• Future Work 
– Construct metamodel based on LES simulations and exercise to identify and mitigate 

impact of key engine parameters on combustion stability 
– Injector operating parameter sweeps and optimization, coupling with in-cylinder 

mixing and combustion 

Dean Edwards:  edwardskd@ornl.gov     Sreekanth Pannala:  pannalas@ornl.gov     Robert Wagner:  wagnerrm@ornl.gov 
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