2012 DOE Vehicle Technologies Program Review

USABC Development of Advanced High-Performance Batteries for EV Applications

Nick Karditsas Cobasys LLC May 16, 2012 Project ID: ES138

"This presentation does not contain any proprietary, confidential or otherwise restricted information"

Introduction – About Cobasys

🛄 COBASYS

Orion, MI

Springboro, OH

 Cobasys is a wholly owned subsidiary of SB LiMotive

SAMSUNG

- ✤ Headquarters is located in Orion, MI
- Cobasys provides world-class engineering and validation capability on location near key OEM customers
- Currently manufacturing NiMH since 2003 in Springboro, OH
- Transitioning Springboro facility to Lithium Ion pack assembly

COBASYS

Overview – USABC Development of Advanced High-Performance Batteries for EV Applications

Timeline

- February 2011
- February 2014
- ✤ 36% Complete

Budget

- Total project funding
 - DOE share 49% (\$4,093,834)
 - Contractor share 51% (\$4,260,930)
- Funding received FY2011: \$940,251
- ✤ Funding FY2012 : \$1,538,253

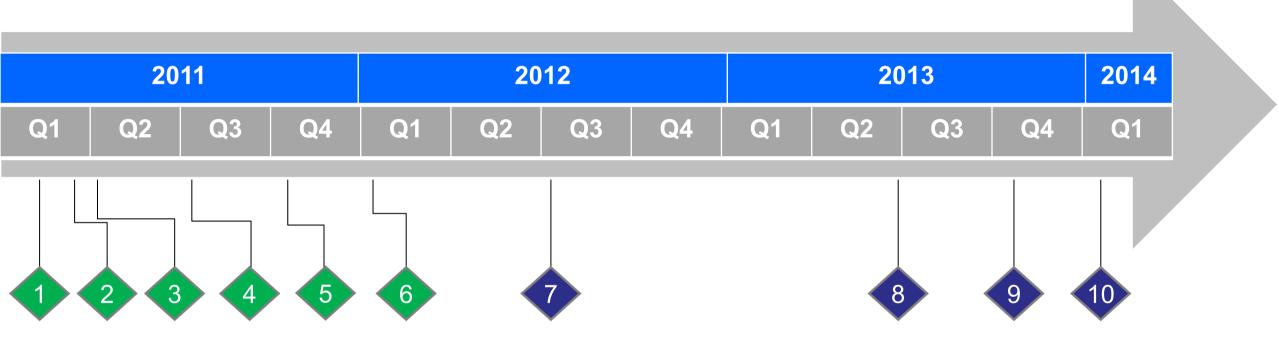
Barriers

- Cost → Current cost for Li-based batteries
 ~\$1000/kWh
 - Target for development: \$300/kWh
- - Target for development: Demonstrate high abuse tolerance
- ★ Life → Batteries should operate consistently throughout a wide range of environments over the life of the vehicle
 - Target for development: Demonstrate high cycle and calendar life performance equivalent to 10 years usage.

Partners

- ✤ USABC
- ✤ U.S. DOE
- ✤ SB LiMotive
- Samsung Advanced Institute of Technology (SAIT)
- ✤ BASF
- Toda America

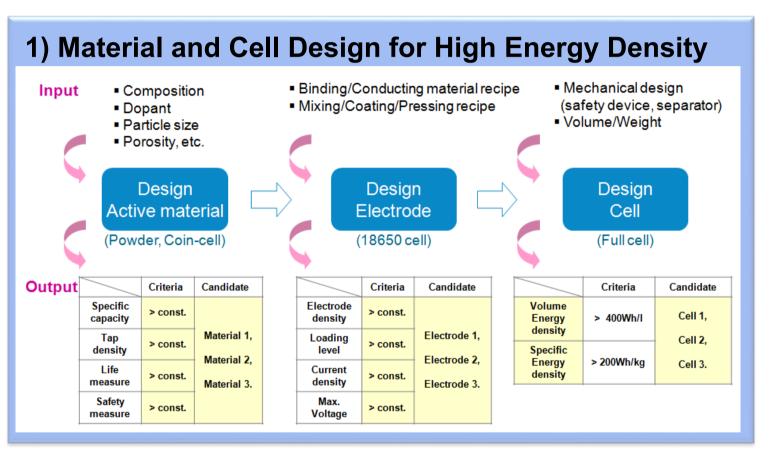
Relevance – EV Battery Pack Development


Objective:

- Develop the next generation lithium-ion cell and pack technology that will meet the USABC target of obtaining a high-energy storage and low-cost electric vehicle battery solution:
 - Increase pack specific energy to 150Wh/kg
 - 2. Reduce pack cost to \$300/kWh
 - 3. Maintain 10 years durable life
 - 4. Ensure high safety
- This project will help to accelerate the commercialization and proliferation of electrified vehicles to greatly lessen America's reliance on foreign energy

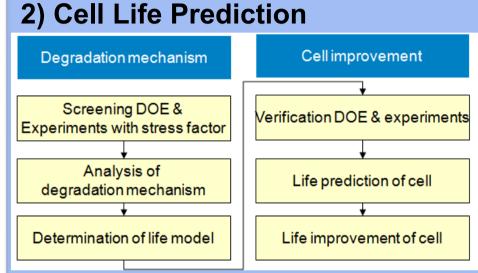
Parameter(Units) of fully	Minimum Goals for	Long Term
burdened system	Long Term	Goal
· ·	Commercialization	
Power Density(W/L)	460	600
Specific Power – Discharge, 80% DOD/30 sec(W/kg)	300	400
Specific Power - Regen, 20% DOD/10 secW/kg	150	200
Energy Density - C/3 Discharge Rate(Wh/L)	230	300
Specific Energy - C/3 Discharge Rate(Wh/kg)	150	200
Specific Power/Specific Energy Ratio	2:1	2:1
Total Pack Size(kWh)	40	40
Life(Years)	10	10
Cycle Life - 80% DOD (Cycles)	1,000	1,000
Power & Capacity Degradation(% of rated spec)	20	20
Selling Price - 25,000 units @ 40 kWh(\$/kWh)	<150	100
Operating Environment(°C)	-40 to +50	-40 to +85
	20% Performance Loss (10% Desired)	
Normal Recharge Time	6 hours (4 hours Desired)	3 to 6 hours
High Rate Charge	20-70% SOC in <30 minutes @ 150W/kg	40-80% SOC in15 minutes
	(<20min @ 270W/kg Desired)	
Continuous discharge in 1 hour - No Failure(% of rated energy capacity)	75	75

🛄 COBASYS


Milestones – Program Milestones and Deliverables

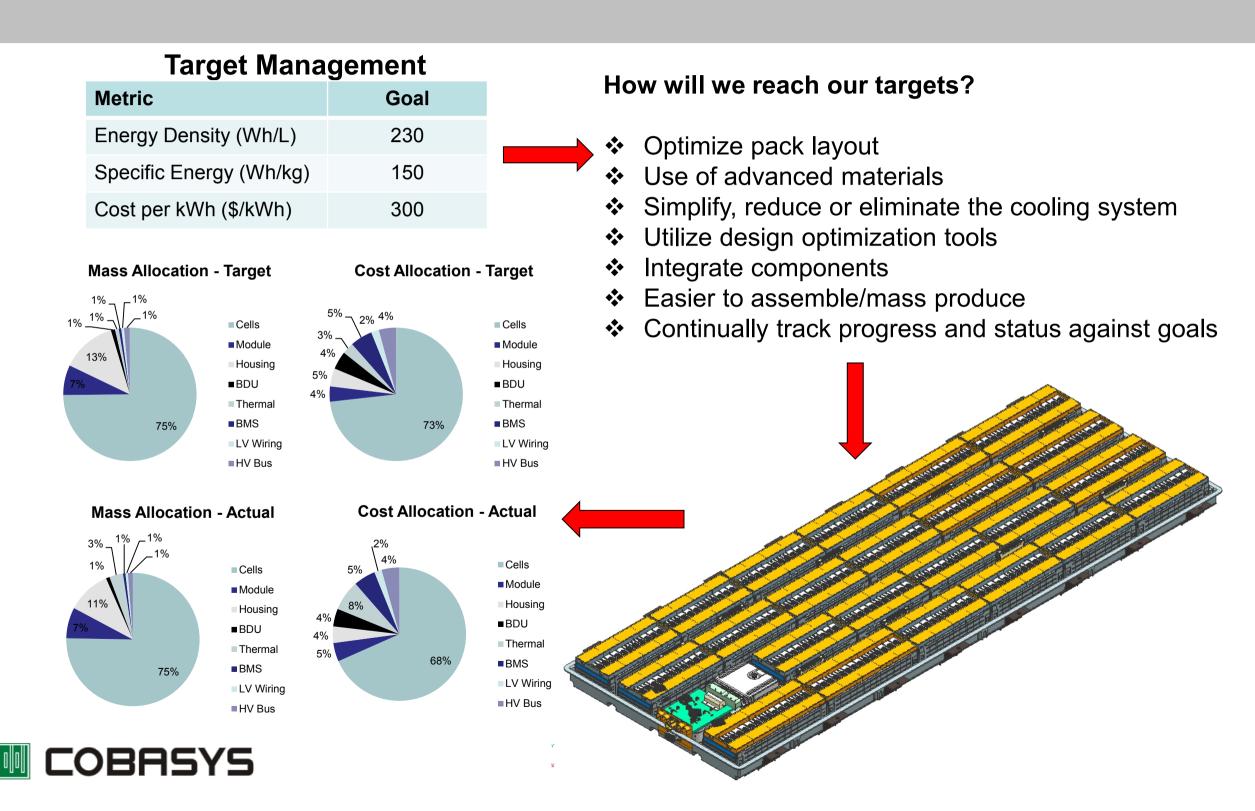
- 1. Official Kickoff (PO received)
- 2. Baseline test kickoff
- 3. 1st Quarterly Review
 (USABC members to SBL Ulsan factory, Korea)
- 4. State of art technology evaluation
- 5. Pack targets defined
- COBASYS

- 6. Cell chemistry selection
- 7. A- Sample Cell Delivery
- 8. B- Sample Cell Delivery
- 9. B- Sample Module Delivery
- 10. A- Sample Pack delivery


Approach – Cell Development

X As cathode materials, two types of NCM material are being considered:

- 1) NCM with over 40% nickel content→<u>Moderate NCM (Mod-NCM)</u>
- 2 NCM with Li rich layered-layered structure $\rightarrow Extreme NCM (Ext-NCM)$


COBASYS

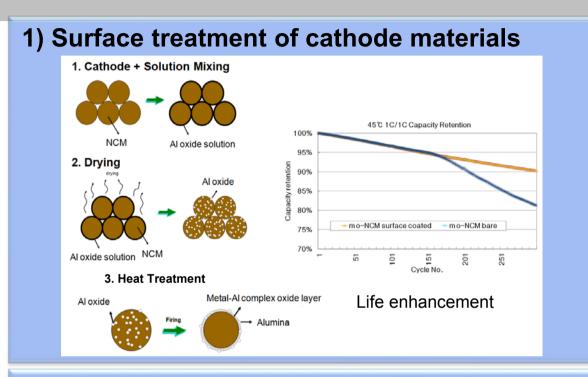
3) Heat Flux Management

	Concept	Idea screening method		Approaches
				Surface-treatment of active materials
	Exothermic Heat	• DSC (Joule heat, onset temp.) • EUCAR test (temp. vs. time)	•ARC (Accel. Rate Calorimetry)	Optimization of active material mixture
				Interfacial reaction reduced Electrolyte system
	Reaction Rate			Current path modification
		Postmortem analysis		Suppressing thermal runaway event

Approach – Pack Development

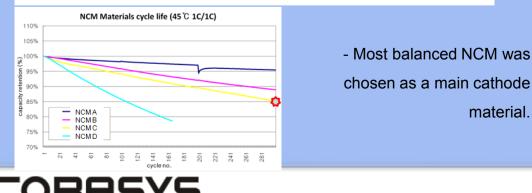
Technical Accomplishments – Cell Development Review

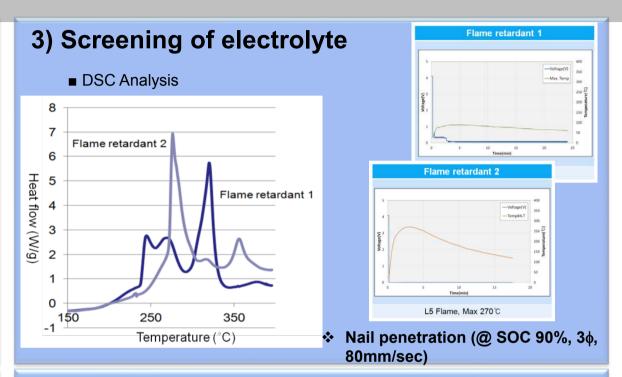
Cell development with Mod-NCM technology

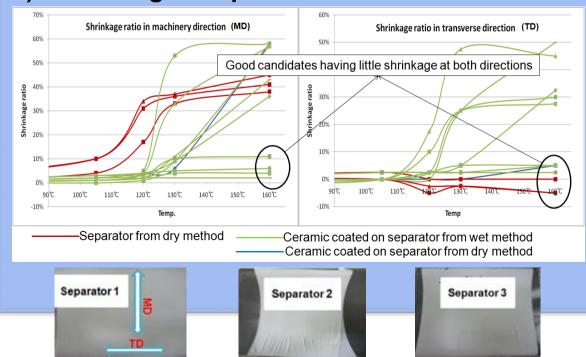

- Completed investigation of cell performance and material characteristics of Mod-NCM cathodes with specific capacity over 150mAh/g
- Demonstrated specific energy density around 165Wh/kg in large format cell and determined the optimal chemistry for balanced power, safety and life performance
- Achieved satisfactory safety performance of cells with thermally stable electrolyte and separators
- Achieved enhanced life performance via surface treatment of cathode and anode materials

Cell development with Ext-NCM technology

- Completed investigation of the basic cell performance of Ext-NCM material using 2320 coin and 18650 surrogate cells and identified several key technical barriers that must be overcome to be useful for an EV cell application
- Completed a detailed post-mortem analysis on BOL and EOL cells and identified the main causes of life performance degradation during cycling and high temperature storage
- Achieved significant improvement of cycle life with an improved electrolyte system that enhances the high voltage stability of the electrolyte
- Initiated the development of large format cells (32Ah cell) with Ext-NCM material C and evaluated basic performance to compare with Mod-NCM technology

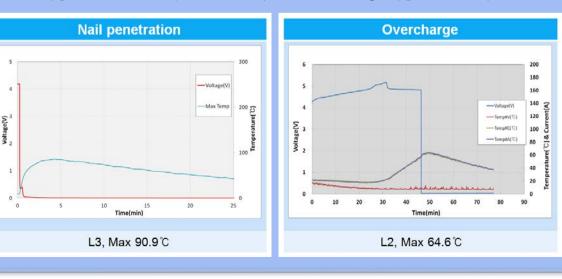



Technical Accomplishments – Cell Development Using Mod-NCM


2) Screening of cathode materials

NCM type	Capacity (coin cell, 0.2C)		Calendar	Safety	DSC	
момтуре			life	(From DSC)	Peak Temp.	Exo. Heat
NCMA	147mAh/g	0	0	O	312.2℃	778.3J/g
NCM B	158mAh/g	0	0	Δ	300.9 ී	1157J/g
NCMC	163mAh/g	Δ	0	Δ	307.7 ී	1159J/g
NCMD	168mAh/g	×	0	×	265.9 ℃	1382J/g

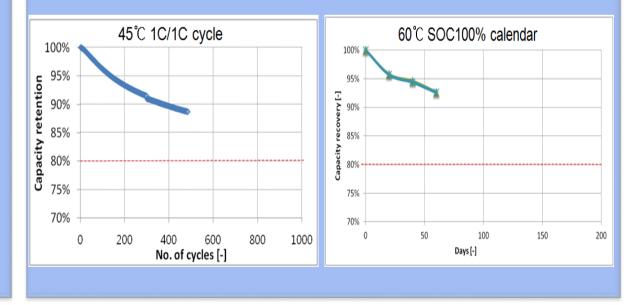
4) Screening of separators


Technical Accomplishments – Cell Development Using Mod-NCM

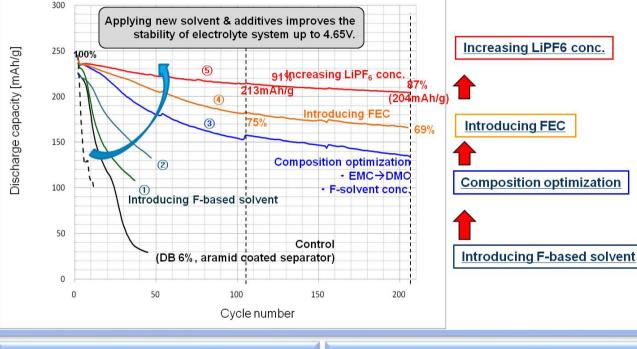
1) Performance summary

Parameter	Unit	Goal	Results (Y2011)
Power Density - 80%DOD, 10s	W/L	1500	>3000
Specific Power Dsch. - 80%DOD, 30s	W/kg	470	>500
Specific Power Regen. - 20%DOD, 10s	W/kg	200	>500
Energy Density - C/3	Wh/L	400	>300
Specific Energy - C/3	Wh/kg	200	>160
Sp. Power / Sp. Energy Ratio	-	2.4:1	>3.0

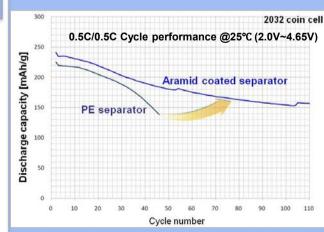
3) Safety performance


♦ Nail (@ SOC 100%, 3¢, 80mm/sec) ♦ Overcharge (@ 32A, 12V)

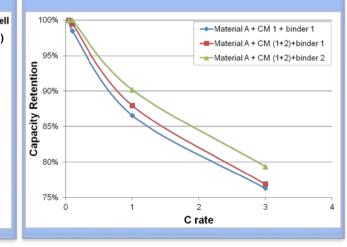
2) PHEV-2 form factor prismatic cell


4) Life performance

🔟 COBASYS


Technical Accomplishments – Cell Development Using Ext-NCM

1) Re-stat	1) Re-stated challenges for Ext-NCM A							
Issue	Baseline	Target	Problems	Countermeasure				
Electrode density (g/cc)	2.3	> 2.8	Low 'True density'	 Optimization of particle size distribution Sintering: temp up. or addition of Li2MoO4 (promoter) 				
Rate performanc e	< level of mo-NCM	= level of Mod- NCM	Low 'Electro- conductivity' (10 ⁻⁵ ~ 10 ⁻⁶ Scm ⁻¹)	 Conducting agent coating on active materials in the primary particle level Fiber Type conducting agent 				
Thermal stability	< level of Mod- NCM	= level of Mod- NCM	1. 50°C lower 'Peak temperature'	 Surface treatment of active materials 				
Life	100 cycles @ 45°C	1000 cycles @ 45°C	 Dissolution of metals due to high cut-off voltage Oxidation of electrolyte and separator 	 New electrolyte solvent and additives against high voltage New separator with anti- oxidation properties 				



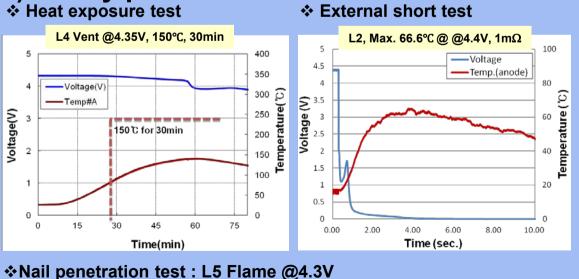
2) Improvement of cycle life with high voltage electrolyte

3) Improvement of cycle life with surface coated separator

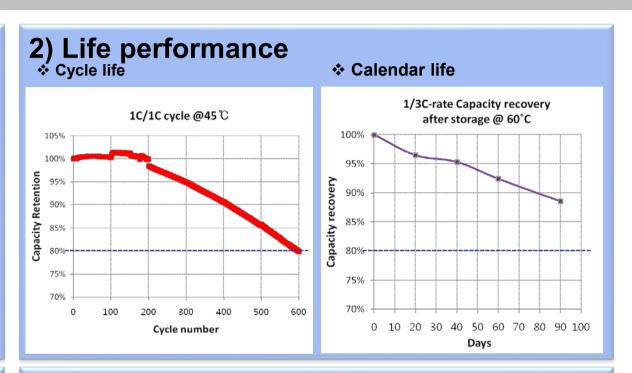
4) Rate performance with conductive agent & binder

X Comparison between Ext-NCM A and C*

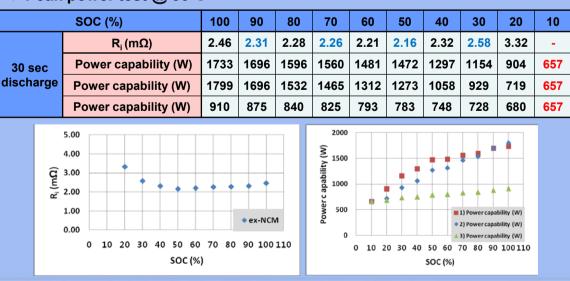
Items	Unit	Ext-NCM A	Ext-NCM C
Specific Capacity @ 0.2C	mAh/g	~240	170
Li ₂ Mn0 ₃ : Li(Ni,Co,Mn)O ₂ Ratio	_	5:5	2:8
Cut-off Voltage Range	V	4.6 - 2.0	4.4 - 2.8
Nominal Voltage	V	3. 45	3.78
Max. Electrode Density	g/cc	2.3	3.0
Energy Density	Wh/L	1904	1927

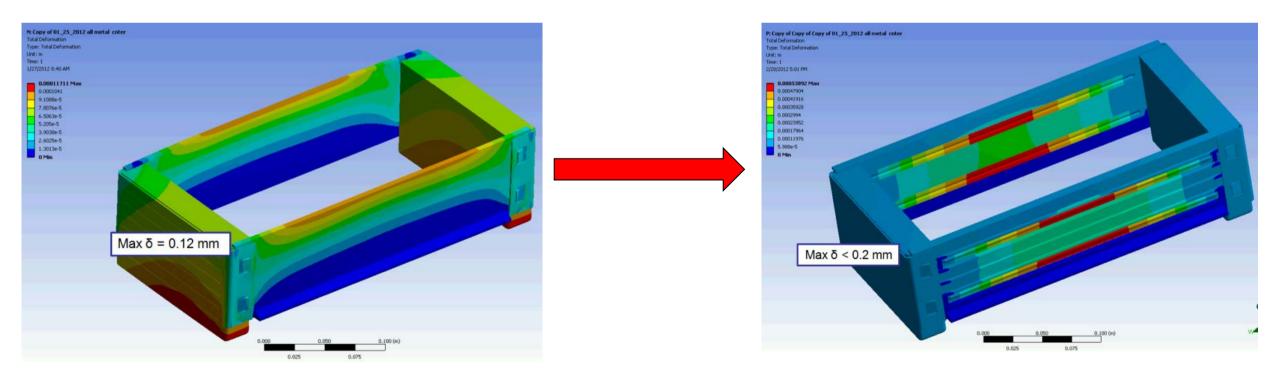

IOBASYS

* Ext-NCM C : High stability Li rich layered-layered structure NCM

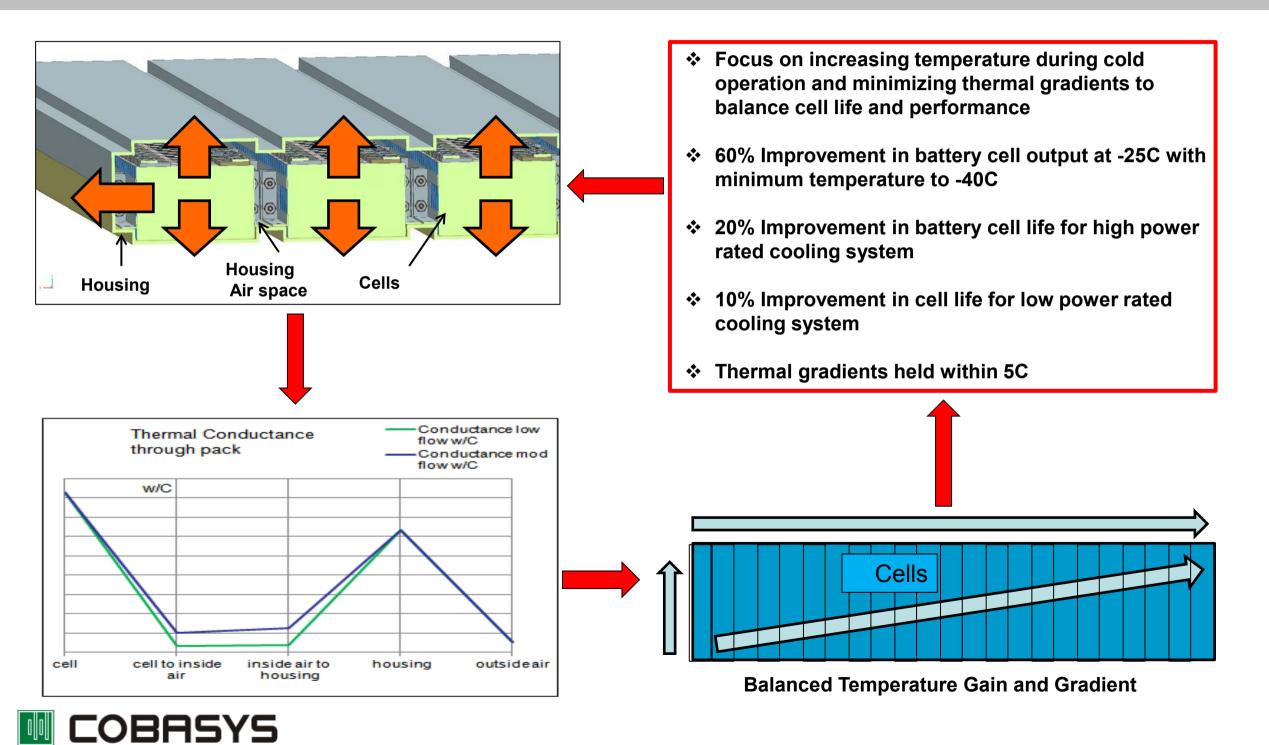

Technical Accomplishments – Cell Development Using Ext-NCM C

1) Performance sum	mary					
Parameter	ameter Unit Goal					
Power Density	W/L	1500	>4000			
Specific Power Dsch. - 80%DOD, 30s	W/kg	470	>500			
Specific Power Regen. - 20%DOD, 10s	W/kg	200	>300			
Energy Density - C/3	Wh/L	400	>300			
Specific Energy - C/3	Wh/kg	200	>160			
Sp. Power / Sp. Energy Ratio-2.4:1>3.0						


3) Safety performance

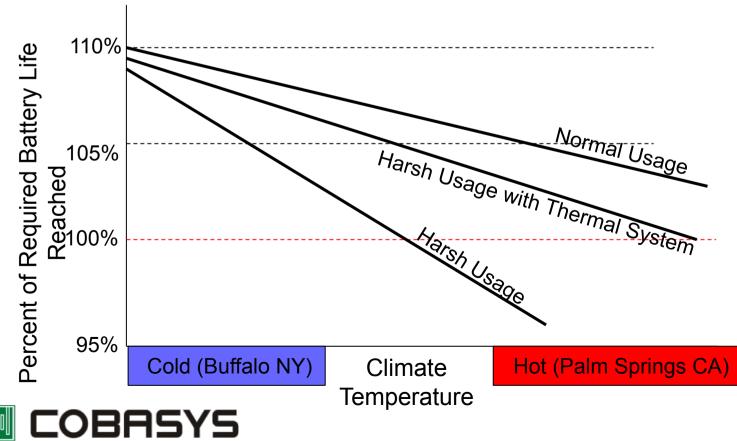

4) Resistance and Power evaluation Peak power test @ 30°C

Technical Accomplishments – Pack Module Development


Cobasys utilizes CAE to optimize designs saving cost and mass

- Material is applied only where structurally necessary
- Metal components are being replaced by plastic or Plastic Metal Hybrid
- ✤ Cell restraint systems are reducing respective masses by 50% over current technology
- Structures are being optimized to have similar or better performance characteristics

Technical Accomplishments – Pack Thermal Development


Technical Accomplishments – Pack Model Development

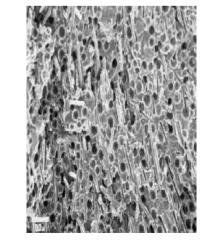
Normal Usage:

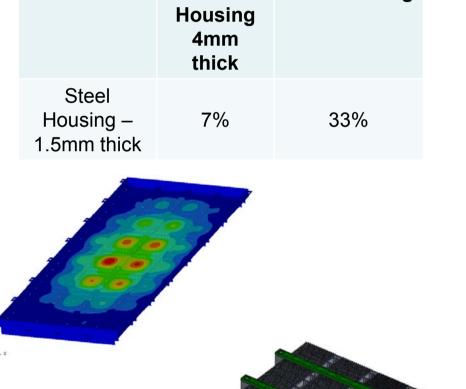
EV cells are expected to meet cell life requirements with Normal Usage due to limited EV cell heat generation

Harsh Usage:

- EV cell life due to Harsh Usage in Hot Environment is estimated to fall short of required Life.
- Thermal Management System is integrated into the battery pack to mitigate the negative effects of Harsh Usage and Hot Environment

USABC Program Life Goal 10 Years or 1000 Cycles


	Hot	Cold
Normal Usage	Meets Life	Exceeds Life
Harsh Usage	Does Not Meet Life	Exceeds Life
Harsh Usage with Thermal System	Meets Life	Exceeds Life


Technical Accomplishments – Pack Housing Development

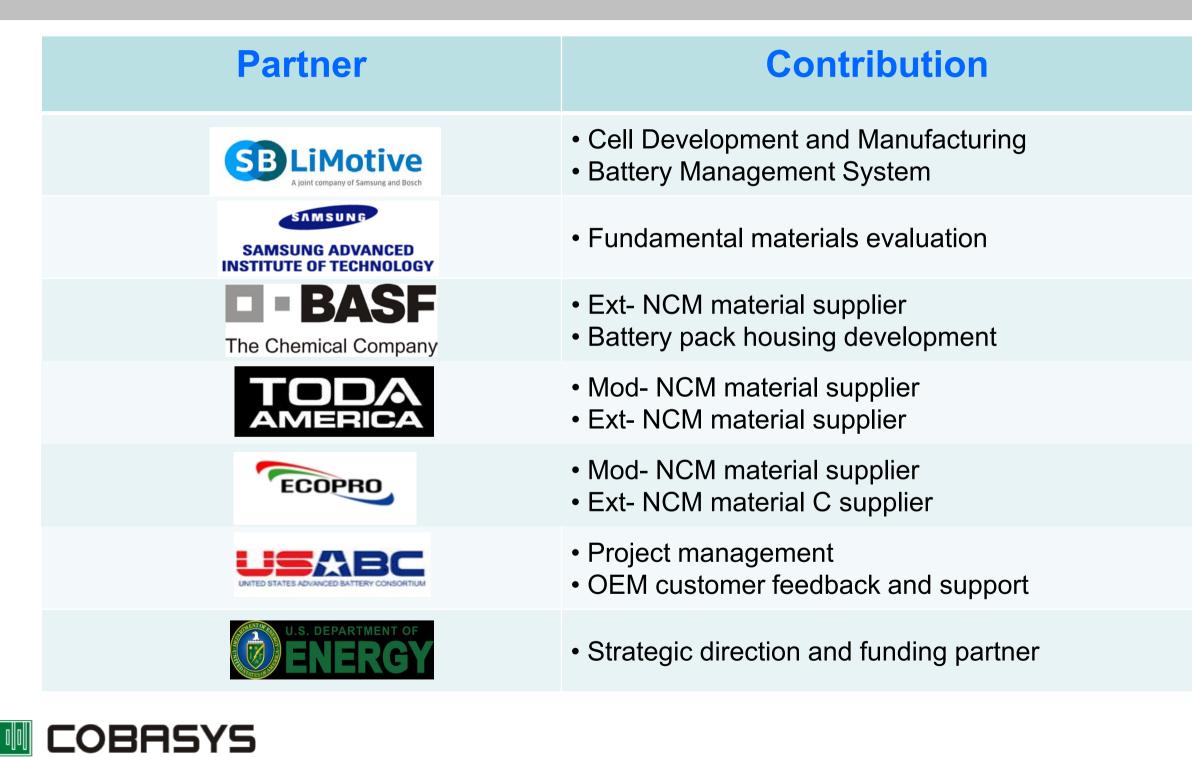
- Cobasys and supplier partner BASF have jointly developed a Plastic Metal Hybrid (PMH) battery structure:
 - •BASF developed structural nylon to meet automotive demands of battery case
 - •System meets structural and durability requirements (NVH, Shock, Vibe)
 - •System is 33% lighter than conventional stamped steel enclosure w/ supports
- Foaming technology added to high pressure injection process to reduce mass, injection pressures, clamping force and improve dimensional stability of finished part

Gas is used as foaming agent

Mass Savings Using Aluminum or Plastic Housing Materials

Reference

Aluminum PMH Housing



Technical Accomplishments – Project Scorecard

14.84	17/20100	5000 - 008V	Current State -of-the-Art	16JAN2012			
Parameter	Unit	Goal	NCM/LMO blended(>115 Wh/kg)	mo-NCM (>140 Wh/kg)	mo-NCM (>160 Wh/kg)	mo-NCM (>180 Wh/kg)	ex-NCM
Power Density	W/L	460	1066	1437	1900	2328	2296
Specific Power Dsch 80%DOD, 30s	W/kg	300	770	1465	448	-	450
Specific Power Regen 20%DOD, 10s	W/kg	150	147	694	433	-3	285
Energy Density C/3	Wh/L	230	109	154	177	187	171
Specific Energy C/3	Wh/kg	150	79	111	131	138	130
Sp. Power / Sp. Energy Ratio		2.0	9.7	13.2	3.4		3.5
Total Pack size	kWh	40	40.5	39.9	40.3	40.1	c.
Life	Year	10	> 13 @ 25 °C (estimated)	1.			
Cycle Life - 80%DOD	Cycle	> 1000	> 2700 @ 25°C(0.7C/1C), full SOC	5			
Power/Cap. Fade	% rated	< 20	20	20	20	20	
Selling Price - 25,000 units @ 40kWh	\$/kWh	332		388	355	318	
Operating Environment	°C	-40 to 50	-30 to 80	-30 to 80	-30 to 80	-30 to 81	5
Normal Recharge Time	hr	6	> 5 CC/CV, 1/50 C	ia.			
High Rate Charge		20-70%SOC in < 30min, 150 W/kg	50% SOC in < 30min, 113 W/kg	50% SOC in < 30min	50% SOC in < 30min	50% SOC in < 30min	4
Continuous Disch. 1 Hr.	% rated capacity	> 75	> 90	> 90	> 90	> 90	15

Collaborations – Cobasys Strong R&D Network

Future Work – Cell and Pack Development

- Cell development with Mod-NCM materials
 - Analysis of electrical properties of NCM cathode materials with specific capacity over 170mAh/g
 - Investigation of electrical and physical properties of cells with specific energy density over 180Wh/kg
 - Overcoming trade-offs of safety and life and increasing specific energy density
 - Optimization of cell design for mechanical and thermal configurations of module and pack
- Development of Ext-NCM materials
 - Analysis of the effect of low current density to cycle life enhancement
 - Improvement of active material by surface coating and doping for a better rate performance
 - Needs for the development of the electrolyte in order to use at high voltage range
- Pack Development
 - Elimination or further reduction of the cooling system
 - Additional optimization and integration of components
 - Reduced cost of purchased components (connectors, MSD's, fittings, temperature sensors, etc.)
 - Reduce complexity of the wiring systems

🔟 COBASYS

Summary

- As an intermediate step toward the development of 200Wh/kg EV cells, cell specific energy density performance over 160Wh/kg was targeted and achieved in 2011. Several cell design factors and materials were investigated to achieve desired power, safety and life.
- Challenges in Ext-NCM development were identified and significant improvement of cycle performance was achieved through improvement of the electrolyte system, resulting in 87% capacity retention at 200 cycles.
 - Ext-NCM cathode material C fabrication and evaluation of large format cells was performed and the results are comparable to Mod-NCM technology cells, with an exception of nail penetration safety.
- Emphasis on new pack materials and component integration as well as assembly process improvement are having significant benefit toward target attainment.

