# **Unique Lanthanide-Free Motor Construction**

Josh Ley, Principal Investigator

Jon Lutz, Presenter

Alan Gilbert, Program Manager

UQM Technologies, Inc.

March 16, 2012

**APE044** 

This presentation does not contain any proprietary, confidential, or otherwise restricted information





#### Timeline

Project start date: 10/01/2011

Project end date: 04/30/2015

Percent complete: 40%

# Budget

#### **Total project funding**

- \$3,025K DOE Share
- \$1,008K UQM Share

Funding received in FY12: \$309K

Funding for FY13: \$1,084K

## **Barriers Addressed**

A: Electric motor cost

B: Elimination of rare-earth elements

E: Efficiency

## **Partners**

Ames Laboratory: improved magnet properties

NREL: motor thermal management

**ORNL:** motor testing

Coordination provided by UQM Program Manager

# **Relevance – Objectives**



Focus Area: Motors with Reduced or Eliminated use of Rare Earth Permanent Magnets for Advanced EDV Electric Traction Drives

#### **Overall Objectives**

- This project pursues unique motor construction that:
  - Eliminates rare earth elements
  - Meets DOE size, weight and efficiency targets
  - Performs comparably to rare-earth motors
- Compliance with the DOE motor specifications
  - Use of low cost magnet (AlNiCo) to meet cost targets
  - High air-gap flux to meet size, weight and efficiency targets
  - 55 kW baseline design
  - Scalable to 120 kW or higher

# **Relevance – Addressing Barriers**

#### • Electric motor cost

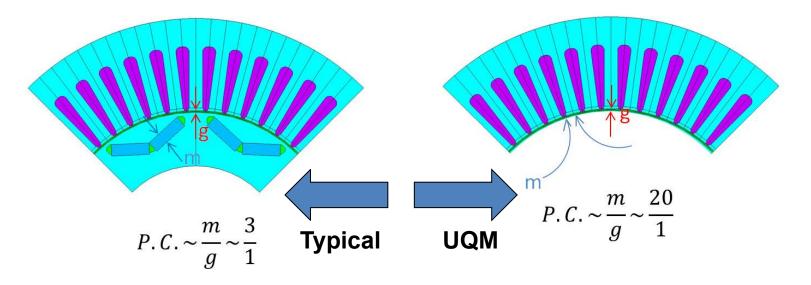
- Rare-earth magnet prices have been fluctuating wildly (roughly \$80/kg to \$750/kg to \$220/kg)
- AlNiCo has been far more stable at ~ \$40/kg
- UQM approach requires roughly 3X the magnet material for a given power rating, leading to cost reductions and stability

#### • Elimination of rare-earth elements

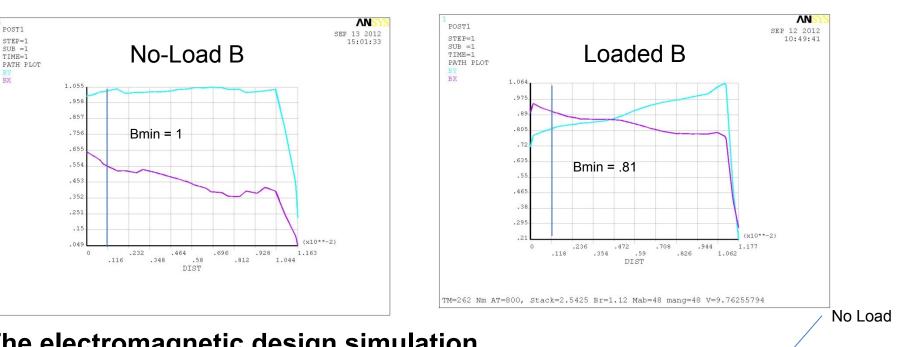
- Efficiency
  - Permanent magnet motors offer efficiency advantages
  - Proposed technology offers PM motor flux levels to maintain efficiency advantages

# **Approach - Milestones**



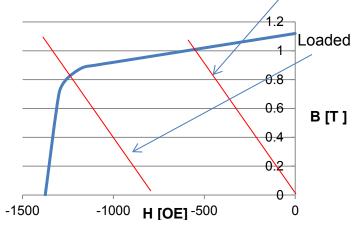

| Month/Year            | Milestone or Go/No-Go Decision                                                                                              |  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|
| FY12 🗸                | Go/No-Go: electromagnetic modeling confirmed that non-RE magnets are usable w/o demagnetization                             |  |  |
| 12/2012 🗸             | Milestone: complete analysis of motor-to-controller interaction (commutation) and refine electromagnetic design accordingly |  |  |
| 02/2013 🗸             | Milestone: complete motor assembly concept                                                                                  |  |  |
| 06/2013               | Milestone: motor drawing package complete                                                                                   |  |  |
| 10/2013               | Milestone: motor build complete and ready for dynamometer testing                                                           |  |  |
| 12/2013<br>(Period 2) | Go/No-Go: UQM dynamometer testing demonstrates technology feasibility                                                       |  |  |
| 02/2014<br>(Period 2) | Milestone: delivery of proof of concept motor to ORNL for independent testing                                               |  |  |

# **Approach - Project Strategy**




- Non-rare-earth magnet chemistries such as AlNiCo are capable of supporting the high flux densities needed to meet cost, power density, specific power, and efficiency targets
- These magnets are not used because they will demagnetize if used in existing magnetic circuit designs

UQM's project strategy is to use and refine a magnetic circuit that avoids demagnetization ⇒ high permeance coefficient and low armature reaction fields experienced at the magnets

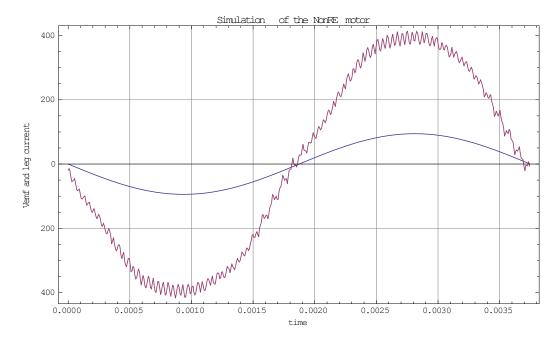



# **Accomplishments - Magnetics**



The electromagnetic design simulation indicates that maximum torque and power is achieved within volume limits

The design incorporates a unique magnetic path to address the low coercivity of AlNiCo magnets (rotor concept is patent pending)






## **Accomplishments – Inverter** (controls) Simulation

Mathematica simulation is a program that UQM uses to model motor ↔ controller interaction

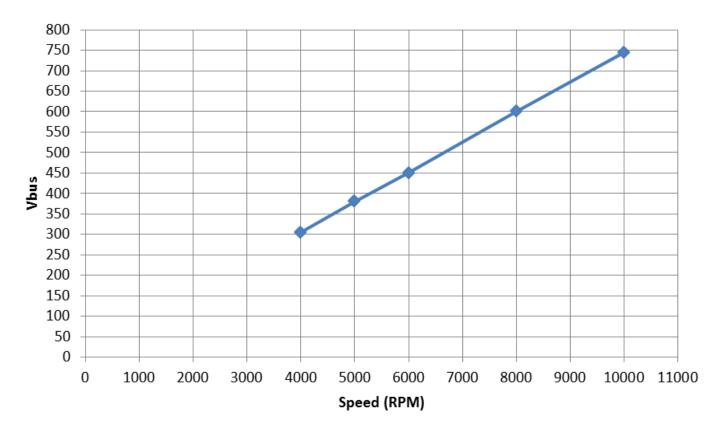
- Commutation (switching) strategies
- Models compared and refined to match test data for over 17 years



#### <u>Inputs</u>

Motor parameters, controller topology, IGBT switching, speed, voltage, coolant temp

#### <u>Outputs</u>

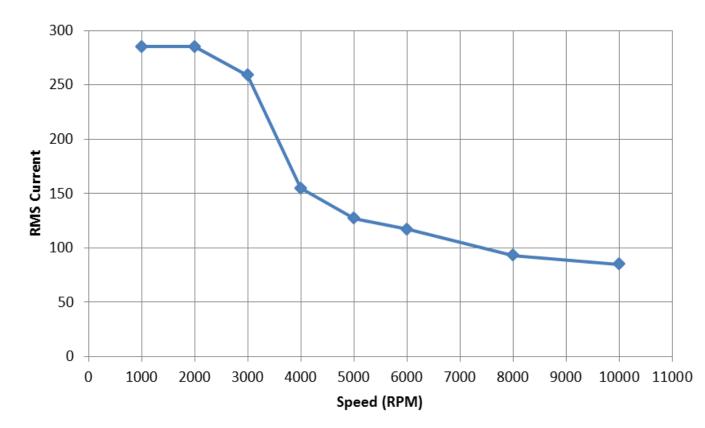

Torque, output power, current waveform, efficiency (losses), temperature rise

## **Accomplishments – Inverter** (controls) Simulation



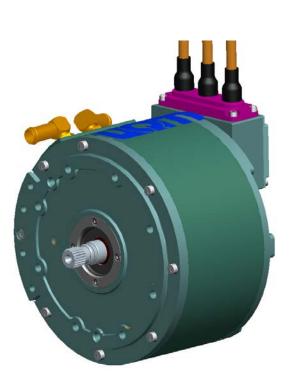
Battery voltage required as a function of speed

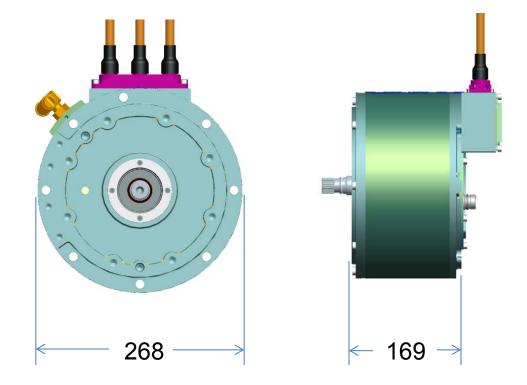
- > 300 VDC for speeds lower than 4,000 RPM
- Linear increase to 750 VDC from 4,000 to 10,000 RPM (boost)




## **Accomplishments – Inverter** (controls) Simulation



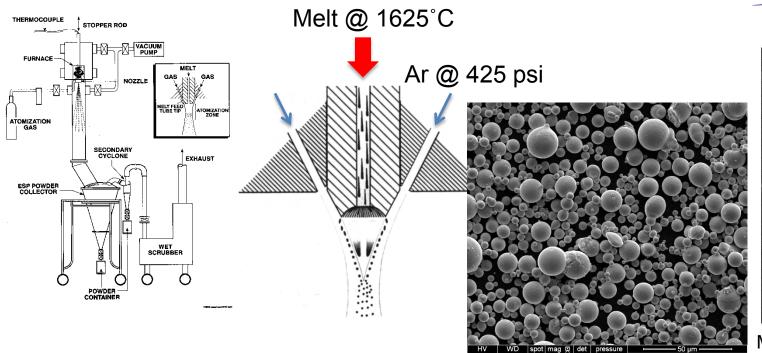

**RMS** current required as a function of speed


- > At full power of 55 kW
- Maximum of 280 amps RMS (400 amps peak)





## Accomplishments – Motor Packaging






Total volume is 9.5 liters, meeting 9.7 liter volume requirement

#### Accomplishments – Higher Coercivity through Process Innovation

#### **First Gas Atomized Pre-Alloyed Alnico 8**

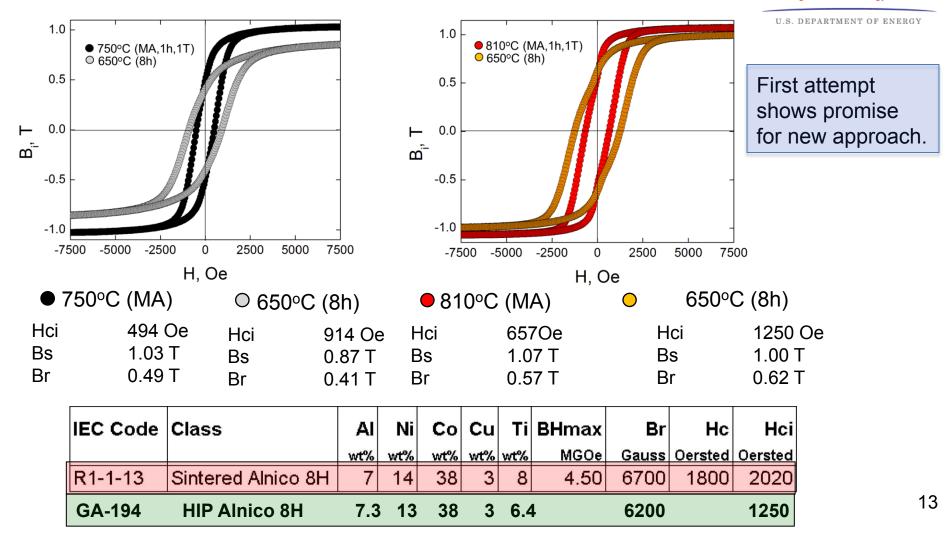


Powder Yield: Avg. particle dia.= 30 µm

Dia.<20µm screened powder

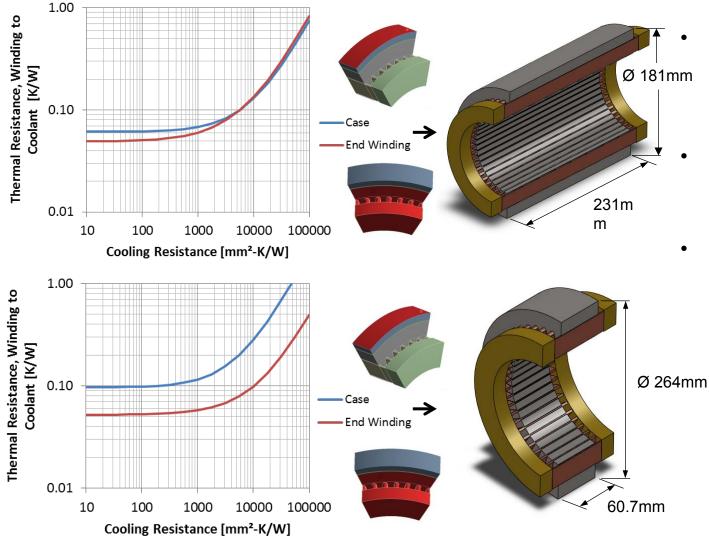
Melt stream before spray onset.

THE Ames Laboratory Creating Materials & Energy Solutions


U.S. DEPARTMENT OF ENERGY

Aim alloy: 32.3Fe-38.0Co-13.0Ni-7.3Al-6.4Ti-3.0Cu (wt.%) ≈ alnico 8H Analyzed: 32.4Fe-38.1Co-12.9Ni-7.3Al-6.4Ti-3.0Cu (45-75µm powder sample)

Interstitial impurities (ppmw): C=66, N=<10, O=420, S=30 (<20µm powder sample)


#### Accomplishments – Higher Coercivity through Process Innovation

#### Summary of Hysteresisgraph Results for Powder Processed Alnico 8H



# Accomplishments – Thermal Analysis

Comparison of Motor Geometry and Cooling Method (Case or Ending Winding, Water Ethylene Glycol or Transmission Oil)



Dil) Geometry and total thermal resistance target affects cooling selection

- Shorter stack length shows benefit from cooling end windings
- Cooling resistance
  estimated from
  effective heat transfer
  coefficient (U)

*тс*"

NTU =

 $\varepsilon = 1 - e^{-NTU}$ 

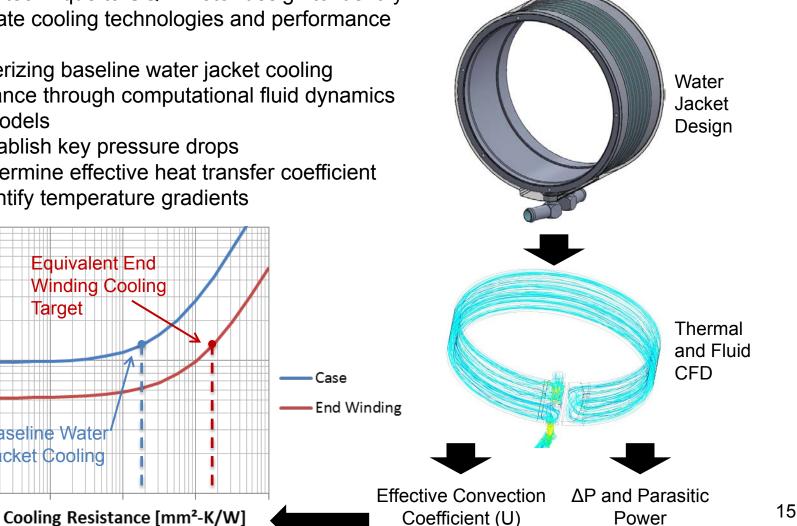
**Cooling Resistance** 

14

# **Accomplishments – Thermal Analysis**



- Applying technique to UQM motor design to identify appropriate cooling technologies and performance targets
- Characterizing baseline water jacket cooling performance through computational fluid dynamics (CFD) models
  - Establish key pressure drops
  - Determine effective heat transfer coefficient
  - Identify temperature gradients


Equivalent End Winding Cooling

Target

**Baseline Water** Jacket Cooling

Thermal Resistance, Winding to

Coolant [K/W]





## **Accomplishments – Requirements Compliance**

|  | Requirement                    | Value                          | Status                                       |
|--|--------------------------------|--------------------------------|----------------------------------------------|
|  | Efficiency                     | >90%                           | Analyzed, Comply                             |
|  | Peak Power                     | 55 kW                          | 55 kW                                        |
|  | Maximum Speed                  | 10,000 rpm                     | TBD, Pending<br>Magnet Retention<br>Analysis |
|  | Operating Voltage Range        | 200-450 VDC<br>325 VDC Nominal | Analyzed, Comply                             |
|  | Maximum phase current          | 400 A                          | Analyzed, small amount of Demag.             |
|  | Torque                         | 262 N-m                        | Analyzed, small amount of Demag.             |
|  | Total Volume                   | <=9.7 L                        | 9.59 L, based on preliminary design          |
|  | Max Stator Diameter            | 10 inches                      | Analyzed, Comply                             |
|  | Pole Coverage                  | 50%-90%                        | 55 %                                         |
|  | Magnet Weight Limit (For Cost) | 4.5 kg                         | 4.5 kg                                       |
|  | EMF THD                        | <10%                           | 2.86%                                        |
|  | EMF Harmonics                  | <5% of<br>Fundamental          | 2.27%                                        |
|  | Cogging Torque                 | < 4 N-m                        | 3.85 N-m                                     |

#### DOE Requirements

#### UQM Internal Requirements

## **Collaboration and Coordination** with Other Institutions

- Subcontractor: Ames Laboratory, FFRDC within the VT Program, for incremental improvements in high flux, low coercivity magnet materials
  - Enable high loads (current density) and minimize magnet content
- Subcontractor: National Renewable Energy Laboratory, FFRDC within the VT Program, for thermal management
  - Assembly heat rejection for power density and cost
- Subcontractor: Oak Ridge National Laboratory, FFRDC within the VT Program, for testing
  - Confirmatory testing; results to be used for design refinement between Year 2 and 3

# **Future Work**



- Complete motor drawing package (detailed part drawings) in June 2013
- Motor build complete in October 2013
  - Uses standard off-the-shelf magnets
  - Optimized water/glycol cooling (NREL analysis)
  - Unique tooling to handle magnet properties
  - Unique method of magnet retention
- UQM testing by the end of the calendar year, using UQM controller that operates to 750 VDC
- ORNL testing early next year
- Vision for Year 3 work (second motor build)
  - Oil cooled variant if analysis shows significant thermal improvement
  - Improved magnet properties from Ames' process work





- Magnetic finite element analysis demonstrates a feasible architecture to enable the use of non-RE magnets
- Motor ↔ Inverter analysis indicates that the design is not field weakening compatible and will require a voltage boost inverter
- NREL models to optimize water cooling channel are being finalized for first motor; analysis to establish direction for second motor
- Ames' work is demonstrating methods to increase magnet coercivity, which will ultimately reduce magnet content required for the motor
- Proof-of-concept motor, through analysis, shows compliance with DOE and UQM-internal specifications
- Motor build late this year will demonstrate the feasibility of the approach