Understanding the Distributed Intra-Catalyst Impact of Sulfation on Water Gas Shift in a Lean NO_x Trap Catalyst

Bill Partridge¹, Jae-Soon Choi¹, Josh Pihl¹, Todd Toops¹,

Jim Parks¹, Nathan Ottinger², Alex Yezerets², Neal Currier²

1: Oak Ridge National Laboratory

2: Cummins Inc

DEER 2010 Conference Emissions Control Technologies Marriott Renaissance Center

September 28, 2010 Detroit, Michigan

U.S. DOE Program Management Team: Ken Howden, Gurpreet Singh, Steve Goguen

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

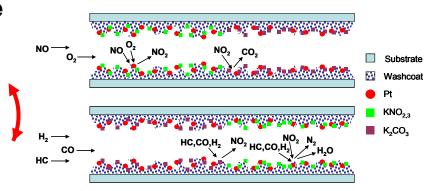
- Background & Motivation
- Experimental Approach
- Sulfation Results
 - NSR: NO_x Storage & Reduction
 - OSC: Oxygen Storage Capacity
 - WGS: Water Gas Shift
- Global Conceptual Model
- Conclusions

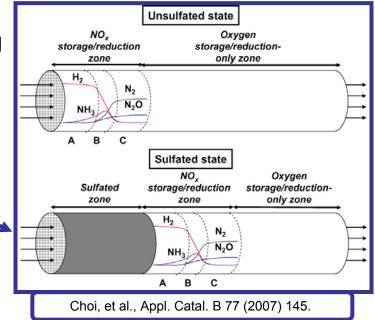
Background

- LNTs (e.g., Pt/Ba/Al₂O₃) operate in cyclic mode
 - LEAN-phase storage:

2NO + 3/2O₂ + Pt + BaO ----> Pt + Ba(NO₃)₂

RICH-phase reduction:


 $5H_2 + Pt + Ba(NO_3)_2 ----> N_2 + 5H_2O + Pt + BaO$

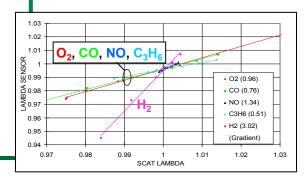

- Internal spatial & temporal variations
- LNT catalysts are sensitive to sulfur poisoning
 - Sulfates more stable than nitrates:

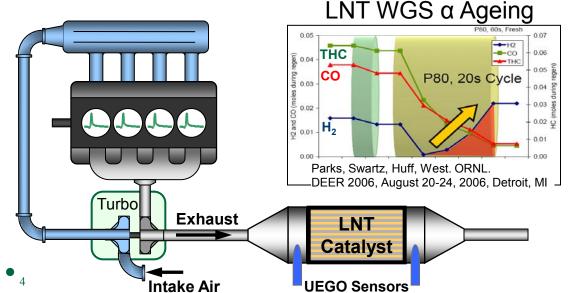
 $SO_2 + 1/2O_2 + Pt + BaO ----> Pt + BaSO_4$ $2NO + 3/2O_2 + Pt + BaSO_4 -- Harrow Ba(NO_3)_2 + Pt + SO_3$

Sulfation changes reaction distributions

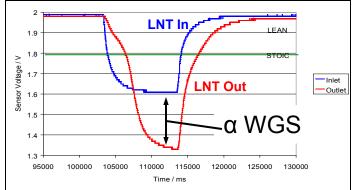
- High-temperature DeS can damage catalyst
 Irreversible thermal aging: e.g., Pt sintering
 - Fuel penalty cost of process

Motivation


Need to minimize high-T DeS events

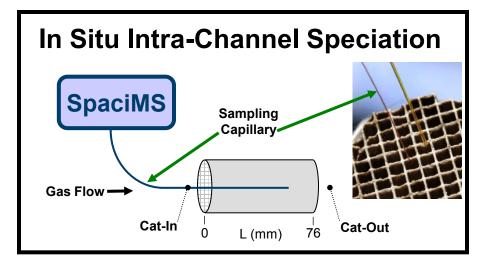

Basic control commands DeS too often and too long

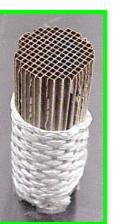
WGS enables advanced control


- □ Cummins OBD Patent (US Patent App. 20080168824)
- Active on-board assessment of catalyst state
- Only DeS when & for as long as required
 - Better efficiency (lower fuel penalty)
 - Better durability (catalyst & engine last longer)

UEGO has unique H₂ cross sensitivity

UEGO Signal α WGS




- Background & Motivation
- Experimental Approach
- Sulfation Results
 - NSR: NO_x Storage & Reduction
 - OSC: Oxygen Storage Capacity
 - WGS: Water Gas Shift
- Global Conceptual Model
- Conclusions

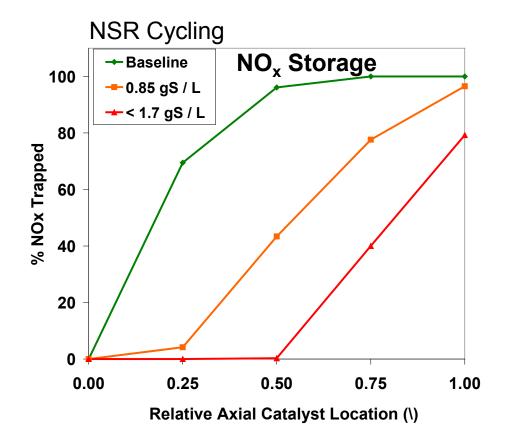
Approach: Controlled Bench Reactor Experiments with Spatially & Temporally Resolved Gas Analyses

- Substrate: 300-cpsi cordierite
- Washcoat: Pt/Ba/Al₂O₃
- No Oxygen-Storage Capacity (OSC) such as Ce
- Evaluated as a 3/4" x 3" core

Procedure

- Baseline: 0 g/L S
- Performance evaluation Neutral; OSC; NSR
- 1st S dosing: 0.85 g/L S
- Performance evaluation Neutral; OSC; NSR
- 2nd S dosing: <1.7 g/L S
- Performance evaluation *Neutral; OSC; NSR*
- Post mortem analysis
 DRIFTS
 - Micro Reactor

Systematically Vary WGS Competition for CO Reductant


- WGS converts CO to H_2 via: CO + $H_2O \rightarrow H_2 + CO_2$
- Lean-phase composition dictates CO reaction possibilities
 - NSR: WGSR vs. OSC vs. LNT regeneration
 - OSC: WGSR vs. OSC
 - Neutral: WGSR only

	RICH (5s)		LEAN (60s)		
	со	H₂O	NO	O ₂	H ₂ O
NSR	2%	5%	300ppm	10%	5%
OSC	2%	5%	0	10%	5%
Neutral	2%	5%	0	0	5%

- **Fast Cycling** (60:5-s lean:rich cycling)
- Temperature: 325°C

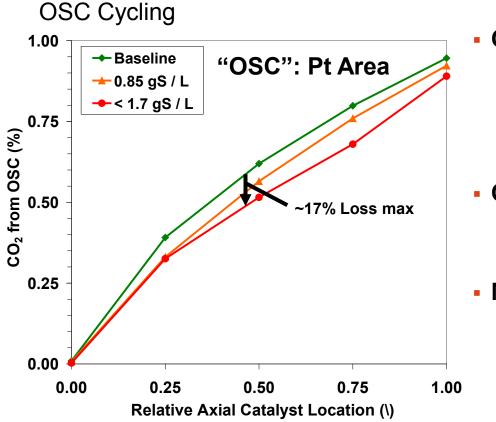
- Background & Motivation
- Experimental Approach
- Sulfation Results
 - NSR: NO_x Storage & Reduction
 - OSC: Oxygen Storage Capacity
 - WGS: Water Gas Shift
- Global Conceptual Model
- Conclusions

Sulfation Progressively Poisons NSR in Plug-Like Fashion

Baseline (0 gS / L_{cat}):

- NSR in front ¹/₂
- Back ½ unused

1st Sulfation (0.85 gS / L_{cat}):


- Front ¼ inactive
- NSR in back ³/₄

2nd Sulfation (<1.7 gS / L_{cat}):

- Front ½ inactive
- NSR in back 1/2

- Background & Motivation
- Experimental Approach
- Sulfation Results
 - NSR: NO_x Storage & Reduction
 - OSC: Oxygen Storage Capacity
 - WGS: Water Gas Shift
- Global Conceptual Model
- Conclusions

Sulfation Has Little Impact on "OSC"

Qualitative Pictorial Representation of NSR Activity

	gS/L _{cat}	1 st Q.	2 nd Q.	3 rd Q.	4 th Q.
	0	NSR		unused	
	0.85	Inactive	degraded		
•	<1.7				

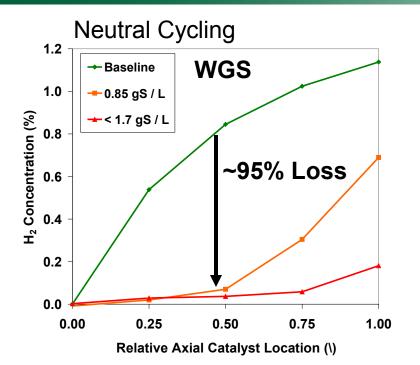
OSC due to Pt redox

- No Ce or support OSC
- ~ active Pt area

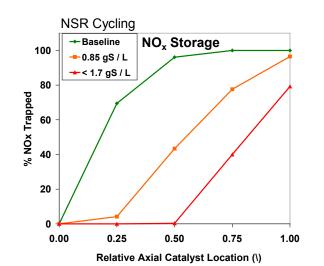
OSC ~ uniform along catalyst

i.e., uniform Pt distribution

Minor sulfation impact on OSC


- ~3-17% loss max
- minor OSC on Ba?

OSC active in sulfated zone


- <u>Pt remains S free cf. poisoned NSR!</u>
- Can change input to NSR zone

- Background & Motivation
- Experimental Approach
- Sulfation Results
 - NSR: NO_x Storage & Reduction
 - OSC: Oxygen Storage Capacity
 - WGS: Water Gas Shift
- Global Conceptual Model
- Conclusions

WGS Very Sensitive to Sulfur Degradation

• 13

Baseline (0 gS / L_{cat}):

WGS throughout

1st Sulfation (0.85 gS / L_{cat}):

- Front ½ : "Max" degradation
- ~90-95% loss from Baseline
- WGS in back ¹/₂

2nd Sulfation (<1.7 gS / L_{cat}):

- Front 3/4 : "Max" degradation
- WGS in back ¼

WGS S-front leads NSR S-front

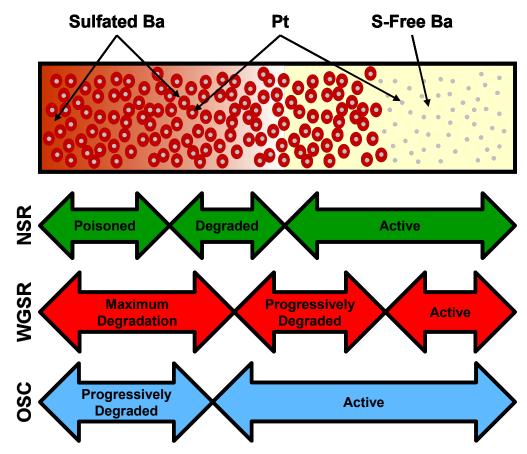
by ~ ¼ catalyst

WGS inactive upstream of NSR

WGS more sensitive to S than NSR

- Background & Motivation
- Experimental Approach
- Sulfation Results
 - NSR: NO_x Storage & Reduction
 - OSC: Oxygen Storage Capacity
 - WGS: Water Gas Shift
- Global Conceptual Model
- Conclusions

Global Model of Distributed S Impact on NSR, WGS & OSC


• Fully active in S-free zone

Initial Sulfation:

- WGS very sensitive to S probably due to changes in Pt-support interface structure
- NSR insensitive due to spillover, surface diffusion and NO_{2,gas} accessing S-free Ba in field

• Progressive Sulfation:

- Further incremental WGS degradation to max
- Progressive NSR degradation as field Ba is sulfated
- Ultimate NSR poisoning
- Minor OSC degradation

- Background & Motivation
- Experimental Approach
- Sulfation Results
 - NSR: NO_x Storage & Reduction
 - OSC: Oxygen Storage Capacity
 - WGS: Water Gas Shift
- Global Conceptual Model
- Conclusions

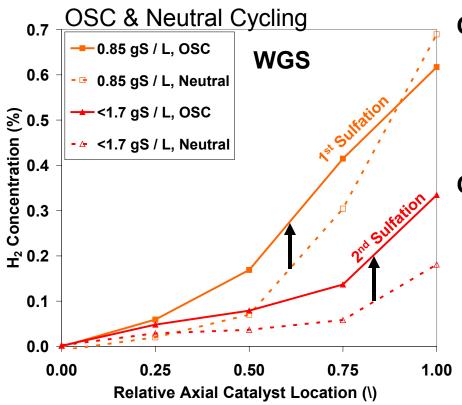
Conclusions

• WGS occurs on Ba LNT catalysts (not just Ce-containing catalysts)

Each LNT function has a different response to sulfation

- WGS: very sensitive to initial S
- NSR: Progressively degraded and poisoned
- OSC: Minor degradation
- The S distribution is different w.r.t. each LNT function
- Conceptual model of distributed S impact on different LNT functions
- So what:
 - Improved understanding of LNT sulfation
 - Enable better models and catalyst system design (device size/capacity)
 - Enable improved OBD & control (cf. Cummins Control Patent)
 - Better emissions control, efficiency & durability

Acknowledgments


Sponsor:

U.S. DOE Office of Vehicle Technologies, Ken Howden, Gurpreet Singh, Steve Goguen

Thank You

Bill Partridge 865-946-1234 partridgewp@ornl.gov How does Sulfur Degrade WGS?

Oxygen Mitigates Sulfur Degradation of WGS

OSC enhances WGS in Sulfated states

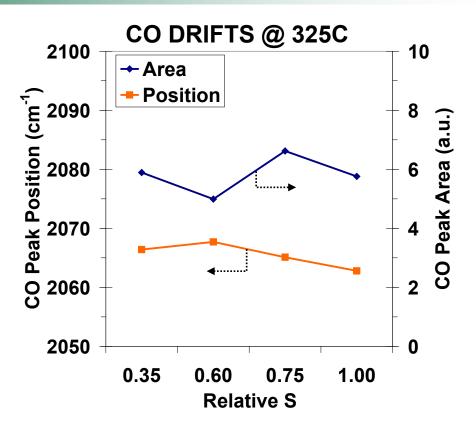
- ~5-10% gain vs. Neutral
- Little recovery vs. ~95% loss w/ Sulfation

O₂ readily displaces S from Pt

- S_{gas} adsorbs on Pt during rich
 - Based on DRIFTS measurements
 - Fridell et al., Topics in Catal. V16/17, 133, 2001
- Pt is S free in OSC fast-cycling conditions
- O₂ improves WGS by desorbing S from Pt

S adsorption on Pt has minor impact on WGS degradation

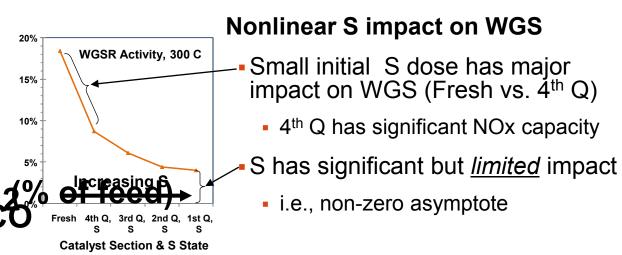
Other non-Pt-S route accounts for primary WGS S-degradation


Does S Degrade WGS by Changing Pt Electronic Structure?

S doesn't change Pt-CO affinity

- cf. flat CO peak position
- Pt electronic density ~ constant

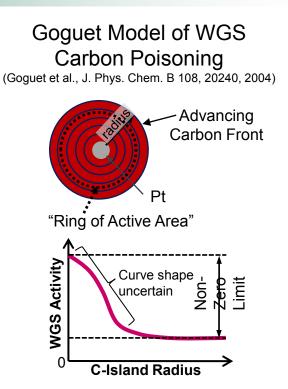
Pt sites are available


- cf. flat CO peak area
- consistent w/ other observations showing that Pt is available

Maybe initial S is detrimental to Pt-support\Ba interface

- Not yet verified for Pt\Ba\Al₂O₃ catalyst
- But,...Pt\Ce extensively studied for WGS & Reverse WGS
- &...common theme is <u>importance of metal-support interface</u> & activation on Pt

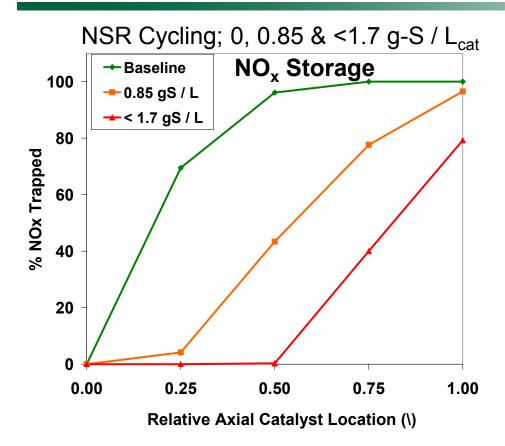
S May Concentrate or Minute S is Detrimental to Interface Structure Necessary for WGSR


Different N & S deposition

Surface N Surface S

Sakamoto et al., J of Catal. 238, 361, 2006

N goes through Pt


- N concentrated around Pt
- S goes down everywhere
- Lean will oxidize S on Pt
 - Likely deposited close to Pt
 - May concentrated S around Pt

- C forms at Pt
- C island grows around Pt
- Proximal C impacts WGS
- No impact of distal C
- Looks like S impact

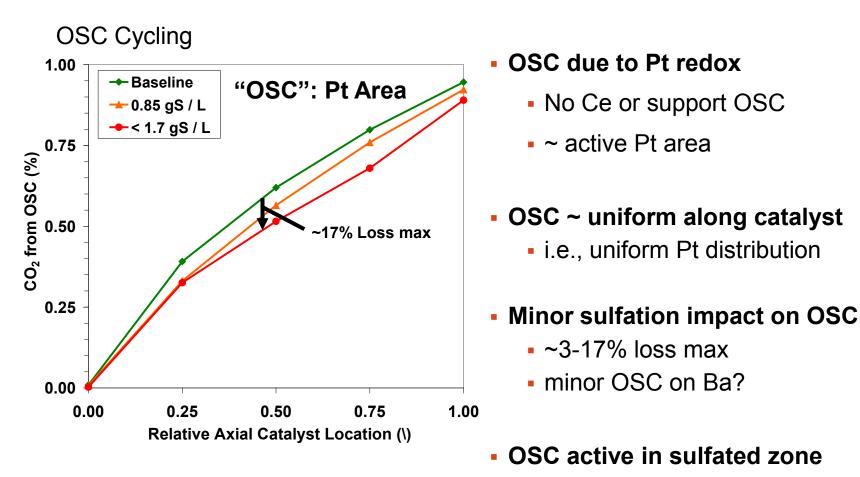
We don't yet know.....Further fundamental research needed

Sulfation Progressively Poisons NSR in Plug-Like Fashion

Qualitative Pictorial Representation of NSR Activity							
gS/L _{cat}	1 st Q.	2 nd Q.	3 rd Q.	4 th Q.			
0	NSR		unused				
0.85	Inactive	degraded	Degraded???				
<1.7							

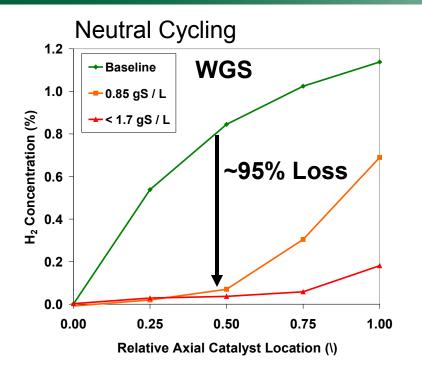
Baseline (0 gS / L_{cat}):

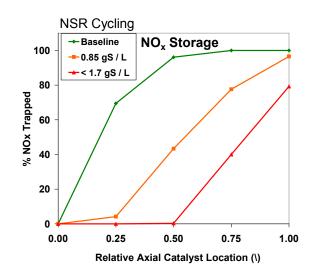
- NSR in front ¹/₂
- Back ½ unused


1st Sulfation (0.85 gS / L_{cat}):

- Front ¼ inactive
- NSR in back ³⁄₄
- Broadened NSR zone (not perfectly "plug like")

2nd Sulfation (>1.7 gS / L_{cat}):


- Front ½ inactive
- NSR in back 1/2


Sulfation Has Little Impact on "OSC"

<u>Pt remains S free cf. poisoned NSR!</u>

WGS Very Sensitive to Sulfur Degradation

Baseline (0 gS / L_{cat}):

WGS throughout

1st Sulfation (0.85 gS / L_{cat}):

- Front ½ : "Max" degradation
- ~90-95% loss from Baseline
- WGS in back ¹/₂

2nd Sulfation (<1.7 gS / L_{cat}):

- Front 3/4 : "Max" degradation
- WGS in back ¼

WGS S-front leads NSR S-front

- By ~ ¼ catalyst
- WGS & NSR S degradation differs

WGS more sensitive to S than NSR