Thermoelectric Mechanical Reliability

A. A. Wereszczak and H. Wang Oak Ridge National Laboratory

R. McCarty and J. Sharp Marlow Industries, Inc.

2011 Vehicle Technologies Annual Merit Review and Peer Evaluation Meeting Arlington, VA 11 May 2011

> Project ID #: PM012

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start: October 2006
- Project end date: March 2012
- Percent complete: 80%

Budget

- Total project funding
 - DOE: 100% pre Mar 2009
 - DOE: 67% post Mar 2009
 - Marlow (CRADA): 33% post Mar09

	FY08	FY09	FY10	FY11
DOE	\$300K	\$300K	\$300K	\$300K
Marlow Ind.		\$75K	\$150K	\$150K

Barriers

- Barriers addressed
 - 2/3 chemical energy in automotive fuel is rejected to atmosphere as waste heat
 - Thermomechanical stresses must be managed and TE material strength improved to fully exploit TE devices
 - TE materials are inherently brittle and susceptible to thermal-induced fracture
- Targets*
 - 5000h life or 10 yr or 150k mile lifetime
 - Brittle bulk materials must survive thermal and mechanical stresses for life

Partners

- Marlow Industries (CRADA)
- General Motors (indirectly)

* "A Science-Based Approach to Development of Thermoelectric Materials for Transportation Applications, Office of FreedomCAR and Vehicle Technologies, August 8, 2007,

Objectives

- Measure needed thermomechanical and thermophysical properties of candidate thermoelectric materials (TEMats) considered for waste heat recovery and cooling applications in vehicular applications.
- Combine measured data with established probabilistic reliability and design models to optimally design automotive and heavy vehicle thermoelectric devices (TEDs) for heat recovery and cooling.

Milestones

- FY10:
 - Generate thermoelastic and mechanical property database as a function of temperature on candidate p- and n-type skutterudites.
- FY11:
 - Generate thermoelastic and mechanical property database as a function of temperature on Marlow's next set of candidate p- and n-type TEMats.
 - Provide mechanical characterization of other material constituents used in the TEDs.

Technical Approach

- Measure Young's Modulus, Poisson's ratio, CTE, thermal conductivity, heat capacity, and strength as a function of temperature of candidate Marlow (and General Motors) TEMats.
- Perform fractography on strength specimens, identify failure initiation sites and strength-limiting flaw types, and recommend processing recommendations that will improve strength.
- Use probabilistic design and reliability methods with candidate and prototype TEDs.
- Provide mechanical evaluation of the other material constituents used in Marlow's TEDs.

Technical Accomplishments – 1 of 11

Overview of FY10 results

- Established a strength database two vintages of high-temperaturecapable TEMats (skutterudites).
- High temperature strength test fixturing developed.
- Transport properties of those skutterudites were also evaluated.
- Neutron diffraction explored as a means to estimate residual stresses in thermoelectric legs in devices. Can enable correlation of predicted and measured stresses.

Technical Accomplishments – 2 of 11

Why is mechanical strength important to TEMats?

$$R_{Therm} = \frac{S_{Tens}(1-\nu)\kappa}{CTE \bullet E}$$

Kingery, J. Am. Cer. Soc., 38:3-15 (1955).

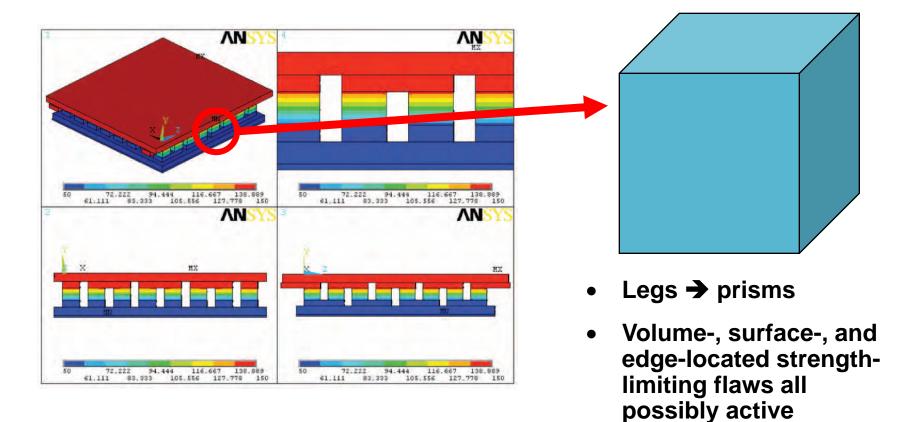
R_{Therm} = Thermal resistance parameter (the larger the better)

- v = Poisson's ratio
- κ = Thermal conductivity
- **CTE = Coefficient of thermal expansion**
 - E = Elastic modulus

Griffith Criterion

$$S_{Tens} = \frac{K_{Ic}}{Y\sqrt{c}}$$

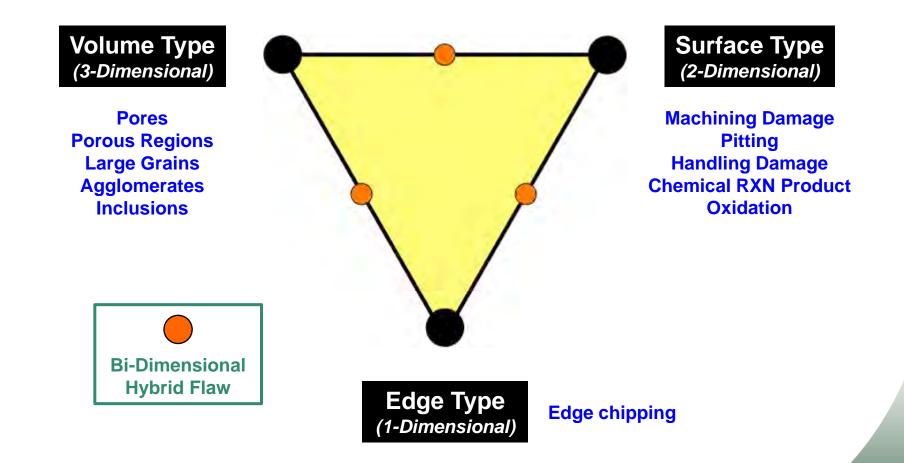
KIc = Fracture toughness Y = Crack shape factor c = Griffith flaw size


Must seek to minimize c!

Tensile Strength << Compressive Strength Manage tensile stress for conservative design

Technical Accomplishments – 3 of 11

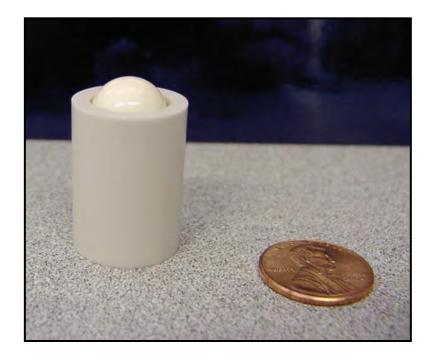
TE legs and potentially active flaws:



e.g., 3 x 3 x 3 mm

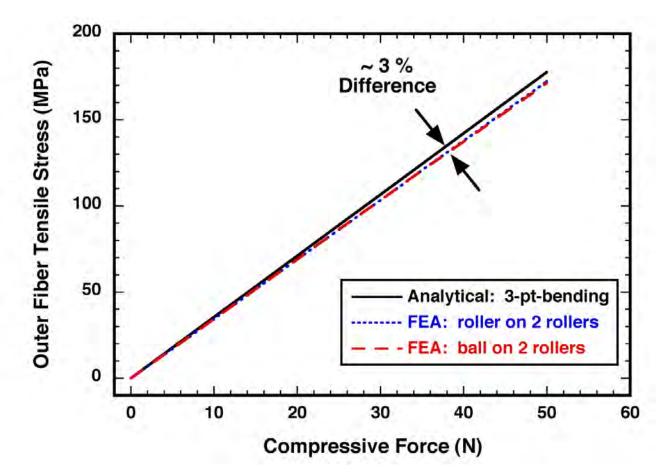
Technical Accomplishments – 4 of 11

Strength-limiting flaw classification for brittle materials; the potential existence of all are in unchamfered TE Legs



Technical Accomplishments – 5 of 11

An All-Alumina High-Temperature "3-Point" Bend Fixture



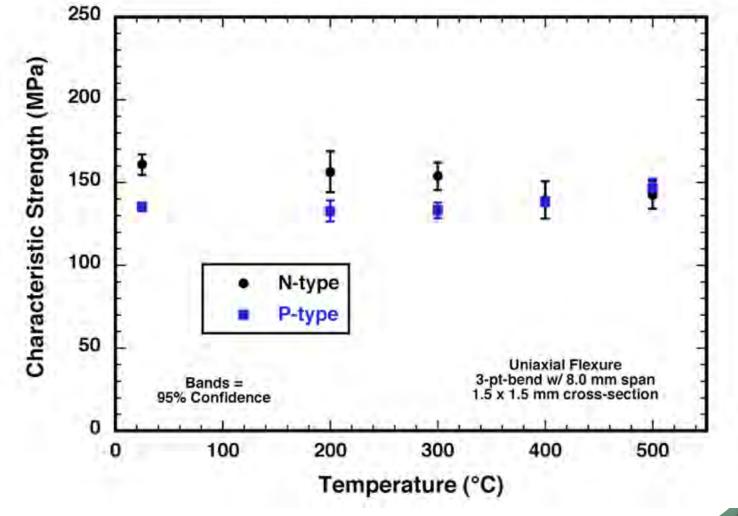
This is a "Ball on Two Rollers" 3-Point Bend Fixture

Technical Accomplishments – 6 of 11

Classical Beam Bending Equation Works

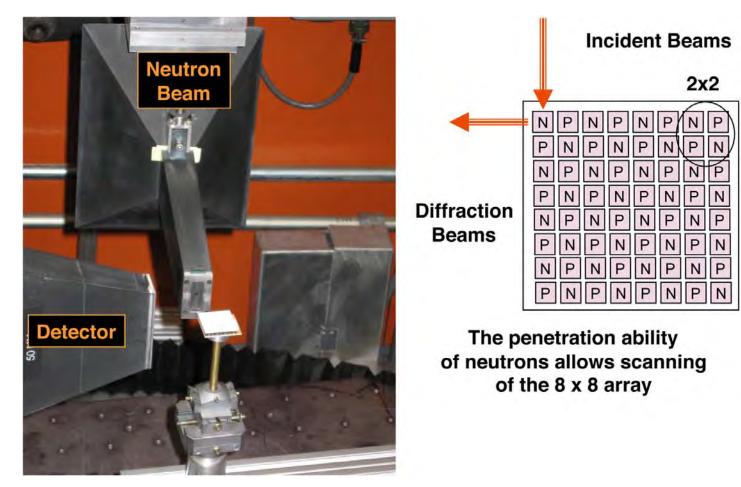

St. Venant's Principle

Technical Accomplishments – 7 of 11


Failure Stress as a Function of Temperature – Vintage 1

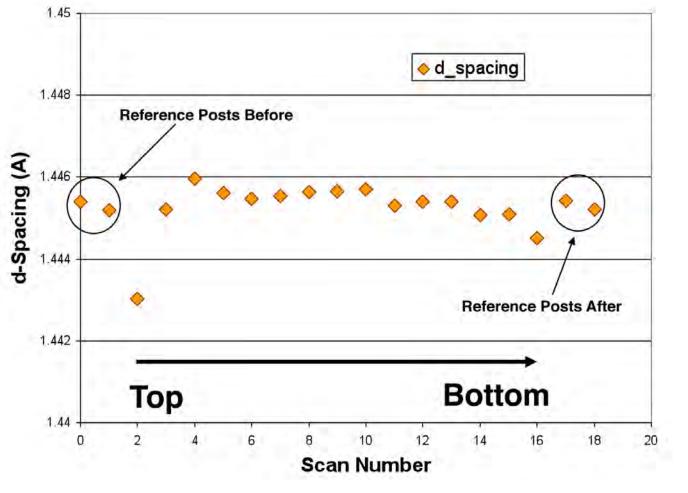
National Laborator

Technical Accomplishments – 8 of 11


Failure Stress as a Function of Temperature – Vintage 2

National Laborator

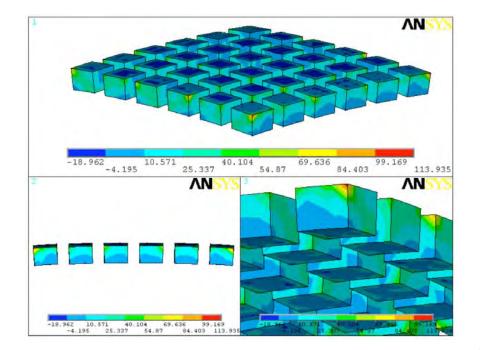
Technical Accomplishments – 9 of 11


Neutron diffraction being used to measure residual stresses in thermoelectric devices

Second Content Content

Technical Accomplishments – 10 of 11

Analysis enables correlation of predicted and measured residual stresses



National Laborator

Technical Accomplishments – 11 of 11

How is this information being used?

- High 1st principal tensile stresses exist in the bulk and on surfaces and edges
- Apply strength data to estimate and reduce risk of fracture
- Improve reliability by:
 - Improving strength of TEMat
 - Lessening tensile stresses in the legs (via geometrical changes)
 - Both

Must manage the competition and concurrent activities of Edge- vs. Surface- vs. Volume-based strength limitation

Future Work

• Continue to collaborate with Marlow Industries, a manufacturer of high-temperature-capable TEMats and TEDs, to contribute to the reliability improvement of their candidate TEMats (FY11 & FY12).

- Identify and quantify the size of strength-limiting flaw populations (FY11 & FY12).
- Support other mechanical reliability issues associated with the TEDs, for example, combating potential residual stresses associated with metallization (FY11 & FY12).

Summary

- Strength of high-temperature-capable TEMats
 - The strength of new vintages of N- and P-type skutterudites were evaluated.
 - Both candidates for use in TE devices for high-temperature energy harvesting.
 - The strength of the new vintage of skutterudite increased by ~ 25%.
- General strength testing of bulk TEMats
 - As long as prismatic TE legs continue to be considered for TE devices, the competing roles of edge-, surface-, and volume-strength-limiting flaws should be considered for meaningful reliability analysis.
 - Representative testing (i.e., stressing) is produced by evaluating actual TE leg geometries (or as close to them as possible).
- Testing in FY11
 - Mechanical property evaluation of next Marlow TEMats.
 - Mechanical characterization of other material constituents in TEDs.

