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Overview

• Project start:  October 2006
• Project end date:  March 2012
• Percent complete:  80%

• Total project funding
‒ DOE: 100% pre Mar 2009
‒ DOE:   67% post Mar 2009
‒ Marlow (CRADA):  33% post Mar09

Timeline

Budget

Barriers

• Marlow Industries (CRADA)
• General Motors (indirectly)

Partners

• Barriers addressed
‒ 2/3 chemical energy in automotive fuel is 

rejected to atmosphere as waste heat
‒ Thermomechanical stresses must be 

managed and TE material strength 
improved to fully exploit TE devices

‒ TE materials are inherently brittle and 
susceptible to thermal-induced fracture

• Targets*
‒ 5000h life or 10 yr or 150k mile lifetime
‒ Brittle bulk materials must survive 

thermal and mechanical stresses for life

*  “A Science-Based Approach to Development of Thermoelectric Materials for
Transportation Applications, Office of FreedomCAR and Vehicle Technologies, August 8, 2007.

FY08 FY09 FY10 FY11

DOE $300K $300K $300K $300K

Marlow 
Ind. $75K $150K $150K
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• Measure needed thermomechanical and thermophysical properties 
of candidate thermoelectric materials (TEMats) considered for waste 
heat recovery and cooling applications in vehicular applications.

• Combine measured data with established probabilistic reliability and 
design models to optimally design automotive and heavy vehicle 
thermoelectric devices (TEDs) for heat recovery and cooling. 

Objectives



Managed by UT-Battelle
for the Department of Energy

• FY10: 

– Generate thermoelastic and mechanical property database 
as a function of temperature on candidate p- and n-type 
skutterudites.

• FY11: 

– Generate thermoelastic and mechanical property database 
as a function of temperature on Marlow’s next set of 
candidate p- and n-type TEMats.

– Provide mechanical characterization of other material 
constituents used in the TEDs.

Milestones
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• Measure Young’s Modulus, Poisson’s ratio, CTE, thermal 
conductivity, heat capacity, and strength as a function of 
temperature of candidate Marlow (and General Motors) TEMats. 

• Perform fractography on strength specimens, identify failure 
initiation sites and strength-limiting flaw types, and recommend 
processing recommendations that will improve strength.

• Use probabilistic design and reliability methods with candidate 
and prototype TEDs.

• Provide mechanical evaluation of the other material constituents 
used in Marlow’s TEDs.

Technical Approach
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• Established a strength database two vintages of high-temperature-
capable TEMats (skutterudites).

• High temperature strength test fixturing developed.

• Transport properties of those skutterudites were also evaluated.

• Neutron diffraction explored as a means to estimate residual 
stresses in thermoelectric legs in devices.  Can enable correlation 
of predicted and measured stresses.

Technical Accomplishments – 1 of 11

Overview of FY10 results
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Why is mechanical strength important to TEMats?

Technical Accomplishments – 2 of 11

RTherm =
STens = 

ν =
κ =

CTE =
E  =

Thermal resistance parameter (the larger the better)
Tensile stress or strength
Poisson’s ratio
Thermal conductivity
Coefficient of thermal expansion
Elastic modulus

Kingery, J. Am. Cer. Soc.,
38:3-15 (1955).

KIc =
Y =
c = 

Fracture toughness
Crack shape factor
Griffith flaw size

Must seek to minimize c!

Tensile Strength << Compressive Strength
Manage tensile stress for conservative design

Griffith Criterion
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TE legs and potentially active flaws:

• Legs  prisms

• Volume-, surface-, and 
edge-located strength-
limiting flaws all 
possibly active

• e.g., 3 x 3 x 3 mm

Technical Accomplishments – 3 of 11
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Strength-limiting flaw classification for brittle materials;
the potential existence of all are in unchamfered TE Legs

Technical Accomplishments – 4 of 11

Bi-Dimensional
Hybrid Flaw

Pores
Porous Regions

Large Grains
Agglomerates

Inclusions

Volume Type
(3-Dimensional)

Machining Damage
Pitting

Handling Damage
Chemical RXN Product

Oxidation

Surface Type
(2-Dimensional)

Edge chippingEdge Type
(1-Dimensional)
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Technical Accomplishments – 5 of 11

This is a “Ball on Two Rollers” 3-Point Bend Fixture

An All-Alumina High-Temperature “3-Point” Bend Fixture
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Technical Accomplishments – 6 of 11

St. Venant’s Principle

Classical Beam Bending Equation Works
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Technical Accomplishments – 7 of 11

Failure Stress as a Function of Temperature – Vintage 1
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Technical Accomplishments – 8 of 11

Failure Stress as a Function of Temperature – Vintage 2
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Neutron diffraction being used to measure 
residual stresses in thermoelectric devices

Technical Accomplishments – 9 of 11
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Technical Accomplishments – 10 of 11

Analysis enables correlation of predicted
and measured residual stresses
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How is this information being used?

• High 1st principal tensile 
stresses exist in the bulk and 
on surfaces and edges

• Apply strength data to 
estimate and reduce risk of 
fracture

• Improve reliability by:
- Improving strength of TEMat

- Lessening tensile stresses in the legs 
(via geometrical changes)

- Both

Must manage the competition and concurrent activities of
Edge- vs. Surface- vs. Volume-based strength limitation

Technical Accomplishments – 11 of 11
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• Continue to collaborate with Marlow Industries, a manufacturer of 
high-temperature-capable TEMats and TEDs, to contribute to the 
reliability improvement of their candidate TEMats (FY11 & FY12). 

• Identify and quantify the size of strength-limiting flaw populations 
(FY11 & FY12).

• Support other mechanical reliability issues associated with the TEDs, 
for example, combating potential residual stresses associated with 
metallization (FY11 & FY12).

Future Work
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Summary

• Strength of high-temperature-capable TEMats
– The strength of new vintages of N- and P-type skutterudites were evaluated.
– Both candidates for use in TE devices for high-temperature energy harvesting.
– The strength of the new vintage of skutterudite increased by ~ 25%.

• General strength testing of bulk TEMats
– As long as prismatic TE legs continue to be considered for TE devices, the 

competing roles of edge-, surface-, and volume-strength-limiting flaws should 
be considered for meaningful reliability analysis.

– Representative testing (i.e., stressing) is produced by evaluating actual TE leg 
geometries (or as close to them as possible).

• Testing in FY11
– Mechanical property evaluation of next Marlow TEMats.
– Mechanical characterization of other material constituents in TEDs.
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