

Mg₂Si Composites with Embedded Si Nanoparticles for Energy Recovery of Waste Exhaust Heat

Principle Investigator: Ali Shakouri Electrical Engineering Department, University of California, Santa Cruz, California 95064

Co-PIs: Z. Bian (UC Santa Cruz); S. M. Kauzlarich (UC Davis)

Industrial partners: NASA JPL; BSST LLC

May 12, 2011 Project ID:ACE070

This presentation does not contain any proprietary, confidential, or otherwise restricted information

<u>Timeline</u>

Start: September 2010 End: August 2013 15% complete

<u>Budget (DOE funding)</u> 2010-11 UCSC \$71K; UC Davis \$71K

2011-12 UCSC \$75K; **UC Davis** \$75K

Partners

- UCSC (Shakouri, Bian) –lead (transport modeling and thermoelectric characterization)
- UC Davis (Kauzlarich) (material synthesis, structural characterization)
- In collaboration with JPL (Fleurial) and BSST (Bell) (verify thermoelectric measurements, study material uniformity, advice on scale up production)

Barriers

- Cost (improve ZT of abundant/non-toxic TE materials)
- Scale up to practical TE device (use of bulk synthesis techniques)

To develop environmentally benign, nanostructured materials that are grown in bulk for enhanced thermoelectric performance (ZT>1.3-1.8) in 500-800K range for direct conversion of waste exhaust heat into electricity.

Milestones:

• Year 1

- Synthesis and characterization of <u>n-type</u> Mg₂Si and Mg₂Si_xSn_{1-x} with <u>embedded nanoparticles</u>
- Boltzmann transport modeling of <u>electron</u> mobility and Seebeck coefficient for Mg₂Si alloys (include nanoparticle scattering)
- Thermal conductivity modeling including nanoparticle scattering

Year 2

- Synthesis and characterization of <u>p-Mg₂Si alloys with nanoparticles</u>
- Boltzmann transport modeling of <u>hole</u> transport including nanoparticles

Year 3

- Demonstrate n- and p-type Mg₂Si alloys with ZT>1.8 and >1.0 -1.3 respectively
- Full thermoelectric property characterization in 300-800K range; verification at JPL and at BSST

Optimize Zintl phase Mg₂Si alloys with embedded nanoparticles (NP) for maximum ZT in temperature ranges for conversion of waste exhaust heat.

Optimize NP size and composition to scattering mid/long wavelength phonons and reduce lattice thermal conductivity

 Optimize NP potential profile to benefit from hot electron (hole) filtering and increase the thermoelectric power factor

Use scalable bulk growth techniques

Order		Abundance ratio (%)
2 nd	Si	25.8
8 th	Mg	1.93

Progress: Electron Transport Modeling

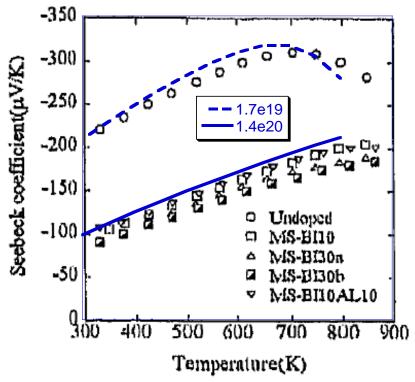
Boltzmann TransportDifferential Conductivity $\sigma = \int \sigma(E)dE$ $\sigma(E) = e^2 \tau(E) v_x^2(E) \rho(E) \left(-\frac{\partial f_0(E)}{\partial E}\right)$ $S = \frac{1}{eT} \frac{\int \sigma(E)(E - E_F)dE}{\int \sigma(E)dE} \propto \langle E - E_f \rangle$ $\frac{1}{\tau(E)} = \frac{1}{\tau_{imp}(E)} + \frac{1}{\tau_{phonon}(E)} + \frac{1}{\tau_{nano}(E)}$

Partial wave method for single particle scattering, III exact solution of the Schrödinger equation

Table 1		
Experimental (300 K) and calculated	electronic properties of Mg2Si.	

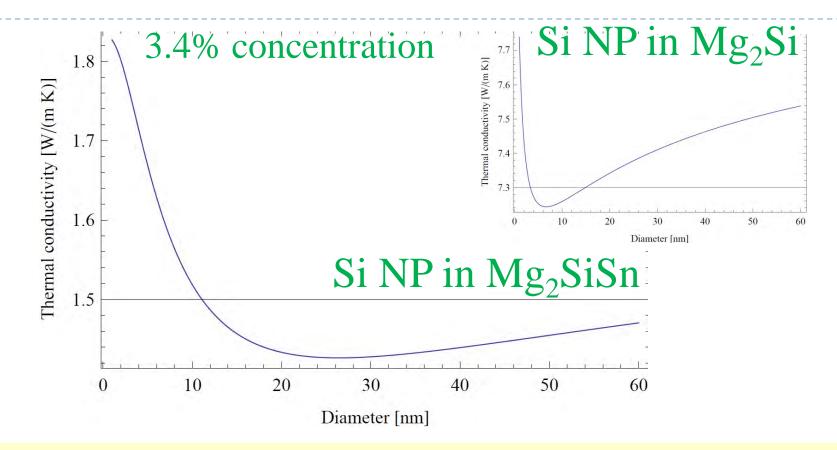
Property	Calc. (from literature)	Calc. (this work)	Exp.	
Direct gap $\Gamma_v \rightarrow \Gamma_c$ (eV)	1.55 ^a [10], 1.65 ^b [9], 2.20 ^c [10]	1.75	2.27 [7]	
Indirect gap $\Gamma_v \to X_c$ (eV)	1.3 ^d [8], 0.12 ^a [10], 0.65 ^c [10]	0.21	0.66-0.78 [4-6]	
Effective mass m_{\parallel}/m_0	0.69 [8]	0.58	2000 C	
Effective mass m_{\perp}/m_0	0.25 [8]	0.19	÷	

Use band parameters from: Computational Materials Science 50 (2011) 847–851


Developed Boltzmann transport model for Mg₂Si taking into account two conduction bands and the impurity and phonon scatterings. Nanoparticle scattering was also added using Partial Wave Method.

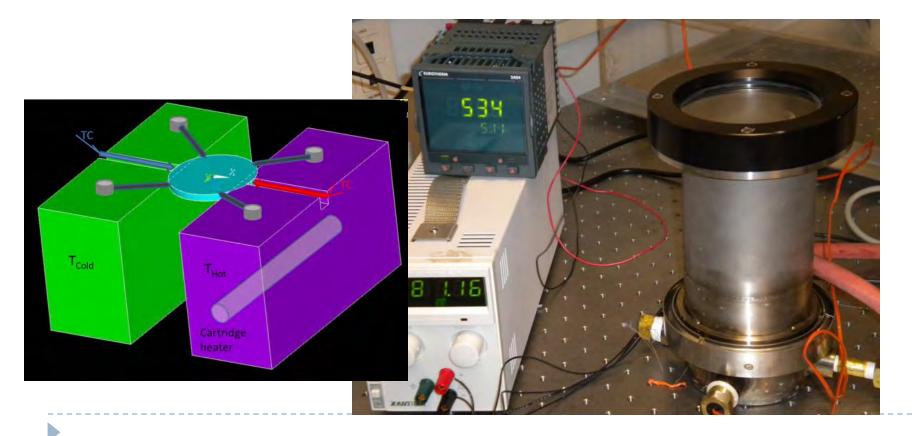
Technical Accomplishments Electron Transport Modeling

Modeling of bulk Mg₂Si Seebeck

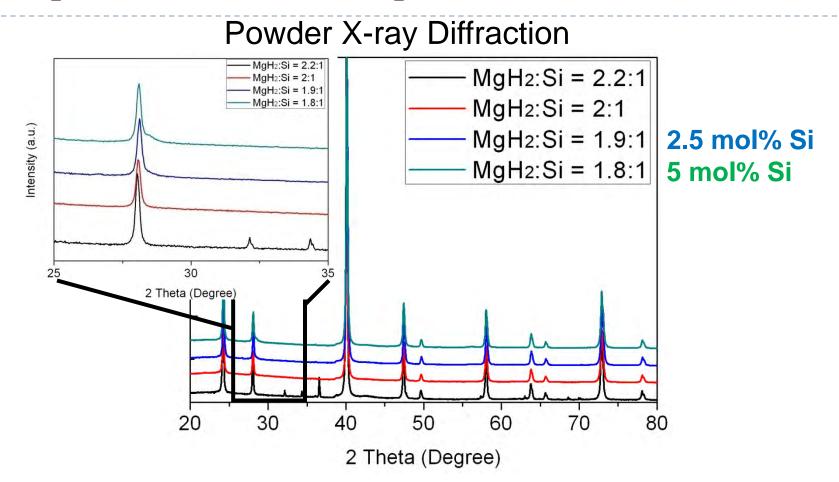

Sample name	Bi doping (atom%)	Al doping (atom%)	Carrier concentration $N_D - N_A$ (cm ⁻³)	Hall mobility (cm ² /Vs)
Undoped	0.0	0.0	1,69 x10 ¹⁹	157.9
MS-BI10	1.0	0.0	1.38×10^{20}	95.4
MS-BI10AL10	1.0	1.0	1.41 x10 ²⁰	91.3
MS-BI30a	3.0	0.0	1.31 x10 ²⁰	86.8
MS-BI30b	3.0	0.0	1,39 x10 ²⁰	87.7

Using experimental data from: "Crystal growth of Mg₂Si by the vertical Bridgman method and the doping effect of Bi and Al on thermoelectric characteristics," MRS fall meeting, 2007

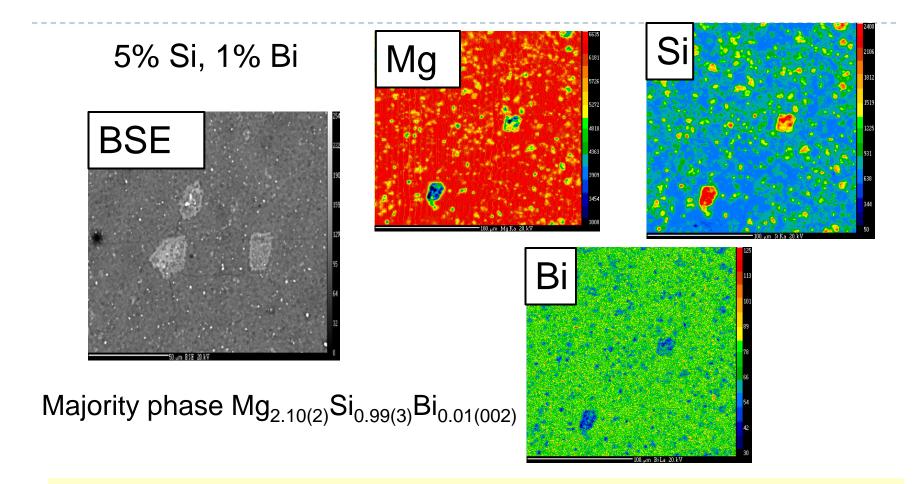
□ Theory can explain both doping and temperature-dependence of the Seebeck Coefficient for n-doped bulk Mg_2Si


Technical Accomplishments Phonon Transport Modeling

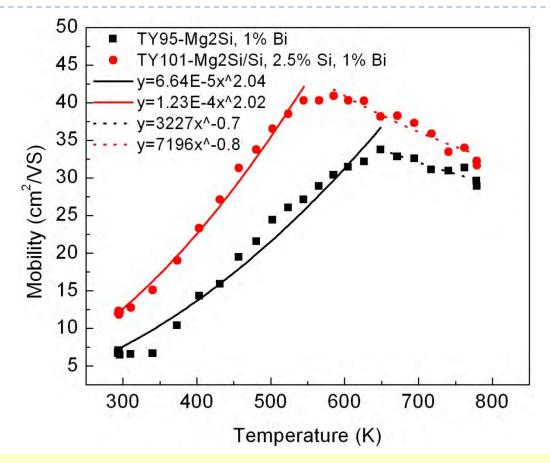
Modeled the effect of Silicon nanoparticles on the thermal conductivity of Mg₂Si and Mg₂SiSn
Optimum nanoparticle size for lowest thermal conductivity identified


Progress: High Temperature Characterization Apparatus

Designed a set up for simultaneous Van der Pauw and Differential Seebeck measurement (in order to characterize the new materials rapidly).

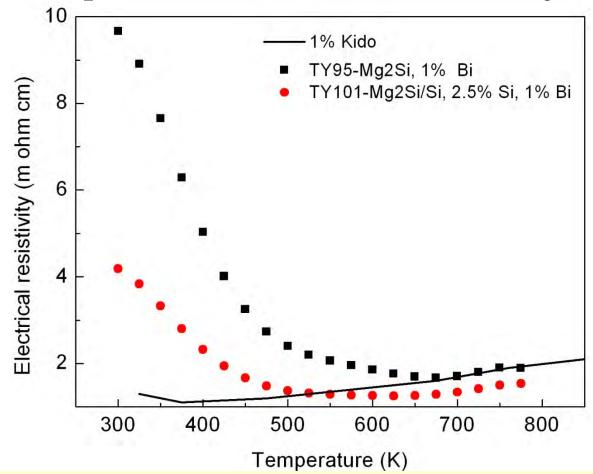

Progress: Preliminary Material Synthesis

 $2MgH_2 + (1+x)nano Si(Bi) \rightarrow Mg_2Si/xSi(Bi)$ (x = 0%, 1.25%, 2.5%, 5%)


Control the amount of nano-Si inclusions through stoichiometry. The very small shoulder on the right of the peak at ~27 degrees is due to Si and we can fit the spectrum to determine the weight percentage and thereby the atomic percentage.

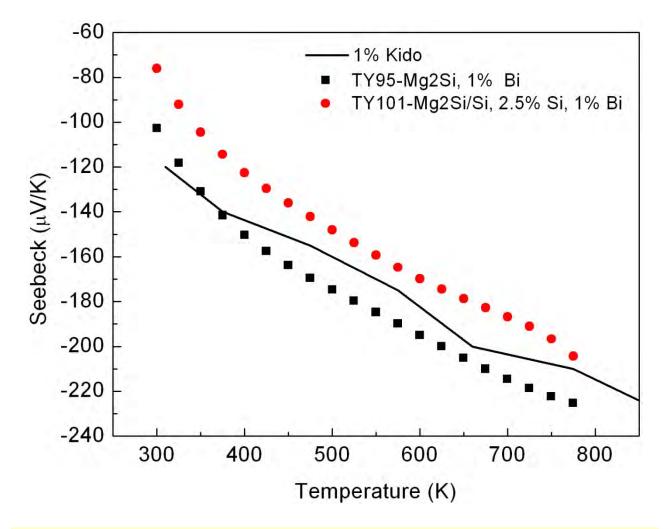
Progress: Microprobe analysis of Mg₂Si with Si Nanoparticles

Si rich areas are the Bi deficient areas. Therefore, most of the Bi diffused into Mg₂Si matrix. Si rich areas are at micro level, which indicates that Si particles agglomerated.


Progress Transport Properties: Mobility

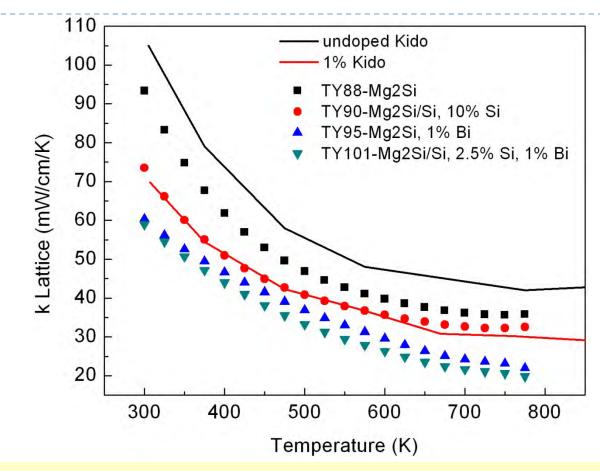
We see impurity scattering at low temperatures. We are planning additional characterizations to see if we can understand this. It is possible that grain boundaries contributing to this effect.

Progress


Transport Properties: Electrical Resistivity

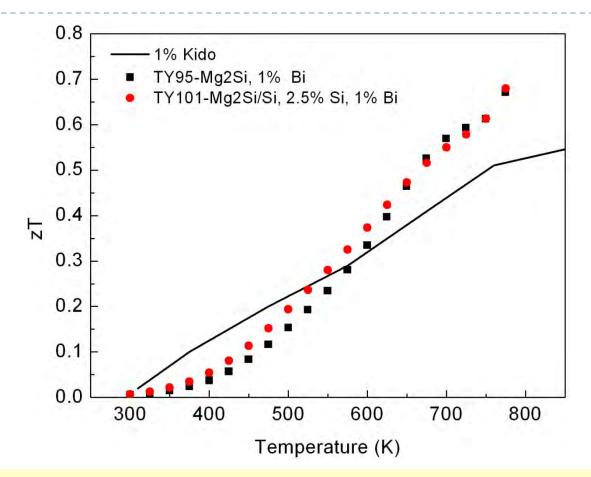
This shows the expected resistivity for doped Mg_2Si , behaving like a normal heavily doped semiconductor. The two samples made by our method show impurity scattering at low temperatures.

Progress


Transport Properties: Seebeck

Seebeck is as expected for a degenerate semiconductor

Progress:


Transport Properties: Thermal Conductivity

Extracted lattice thermal conductivity: Measure thermal conductivity using laser flash method and subtracting the electronic contribution

□ The results are comparable (and slightly lower) than that of Kido et al.

Technical Accomplishments Transport Properties: Figure of Merit (ZT)

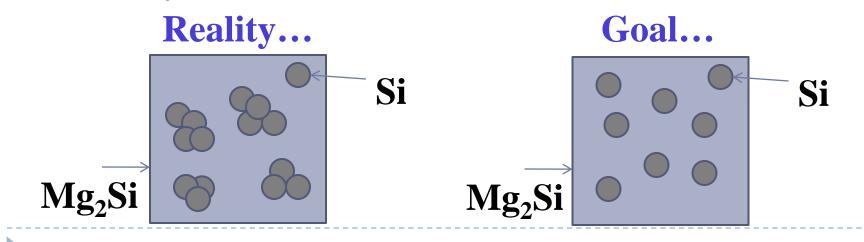
The figure of merit ZT of 1% Bi doped Mg_2Si with 5% of Si nanocomposite is 0.68 at 775 K, which is approximately 30% improvement compared to 1% Bi doped Mg_2Si (ZT ~0.52) reported by Tani, Kido, *Physica B* **2005**, *364* (1-4), 218-224.

Collaborations

Tela Favaloro, Zhixi Bian, Natalio Mingo and Ali Shakouri

Electrical Engineering Department, University of California, Santa Cruz, California 95064

Tanghong Yi, Oliver Janka and Susan Kauzlarich Department of Chemistry, University of California, Davis, California 95616


Sabah Bux, and Jean-Pierre Fleurial

Jet Propulsion Laboratory, Pasadena, California 91109

Proposed Future Work

Detailed comparison of theory/experiment; understand the origin of mobility degradation at low temperatures
Optimize the growth condition (make the silicon nanoparticles isolated and homogeneously distributed with the assistance of solution synthesis)
Identify high performance p-doping (Year 2)
Improve ZT by optimizing nanoparticle size and potential distribution profile

distribution profile

Summary

 Optimization of Mg₂Si Composites for thermoelectric waste heat recovery in vehicle exhaust has been investigated

Technical Accomplishments

- Preliminary electron transport modeling based on Boltzmann including two conduction bands and impurity/phonon scattering (Seebeck of bulk Mg2Si)
- Preliminary thermal conductivity modeling (optimum Si nanoparticle size for minimum lattice thermal conductivity)
- A series of Mg2Si samples with embedded Si nanoparticles have been synthesized and extensively characterized in a wide temperature range.
- Current ZT~0.7 at 800K shows 30% improvement compared to bulk Mg₂Si.
- Microprobe shows that Si rich areas are at micro level (agglomeration), and Bi is preferentially distributed in Mg2Si.
- We are investigating the cause of additional impurity scattering at low temperatures.