

U.S. Department of Energy Energy Efficiency and Renewable Energy

NSF-DOE Thermoelectrics Partnership:

Automotive Thermoelectric Modules with Scalable **Thermo- and Electro-Mechanical Interfaces**

Prof. Ken Goodson Department of Mechanical Engineering Stanford University

Prof. George Nolas **Department of Physics** University of South Florida

ACE067

Dr. Boris Kozinsky Energy Modeling, Control, & Computation R. Bosch LLC

NOVEL MATERIALS LABORATORY

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Start January 2011
- End December 2013
- ~66% complete

Budget

- \$1.22 Million (DOE+NSF)
- FY13 Funding = \$423K
- Leveraging:
 - ONR (FY09-11)
 - Fellowships (3 NSF, 2 NDSEG, Sandia, Stanford DARE)

Barriers (2.3.2)

- Thermoelectric Device/System Packaging
- Component/System Durability
- Scaleup

Partners

- K.E. Goodson, Stanford
- George Nolas, USF
- Boris Kozinsky, Bosch

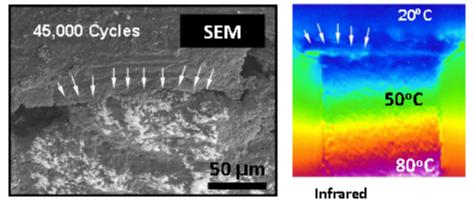
NOVEL MATERIALS LABORATORY UNIVERSITY OF SOUTH FLORIDA

Relevance: Addressing Key Challenges for Thermoelectrics in Combustion Systems

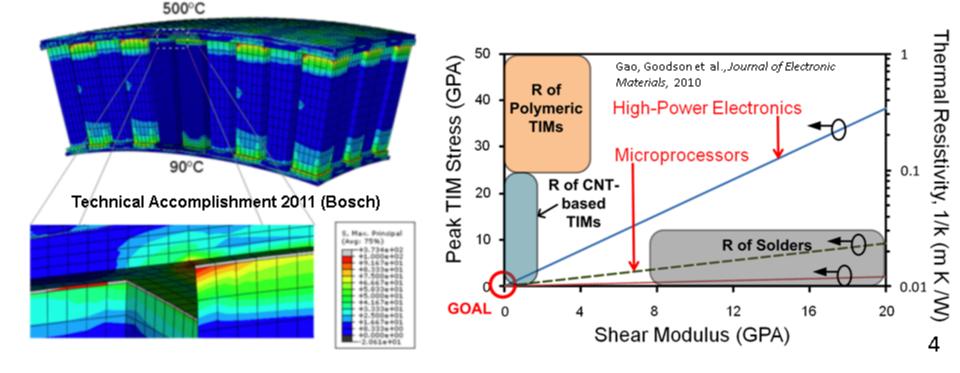
Improvements in the intrinsic ZT of TE materials are proving to be very difficult to translate into efficient, reliable power recovery systems.

Major needs include...

600 °C Heat hot side / heat exchanger thermal insulation / e.g. ceramic plate thermal conductor/ e.g. copper electrical & thermal diffusion barrier n р joining technology electrical & thermal conductor/ e.g. copper conductor/ e.g. copper thermal thermal insulation / e.g. ceramic plate cold side / heat exchanger Cooling 90 °C


...Low resistance interfaces that are stable under thermal cycling.

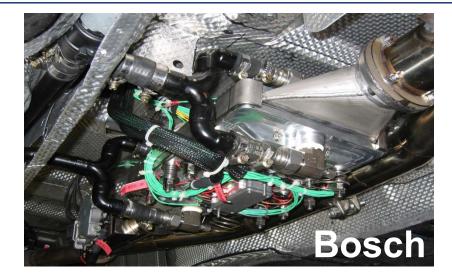
...High-temperature TE materials that are stable and promise lowcost scaleup.

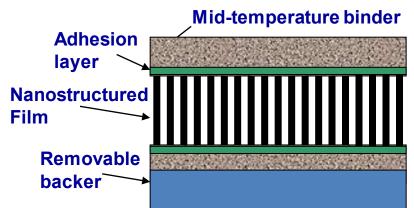

...Characterization methods that include interfaces and correlate better with system performance.

Relevance: Thermoelectric Interface Challenge

- Combustion TEG systems experience enormous interface stresses due to wide temperature spans.
- Thermal cycling degrades interface due to cracks, delamination, reflow, reducing efficiency.
- Our simulations show importance of thermodynamic stability (chemical reactivity, intersolubility, etc.) and elastic modulus.

Barako, Park, Marconnet, Asheghi, Goodson, J. Electronic Materials, Vol 43, Issue 3 (2013)


Research Objectives & Approach


OBJECTIVES

Develop and assess the impact of novel interface and material solutions for TEG systems for automobile applications

Explore and integrate promising technologies including nanostructured interfaces, filled skutterudites, cold-side microfluidics

Practical TE characterization including interface effects and thermal cycling

Panzer, Goodson, et al., US Patent (2007) Hu, Goodson, Fisher, et al., *ASME JHT* (2006) Won, Kenny, Fisher, et al., *CARBON* (2012)

APPROACH

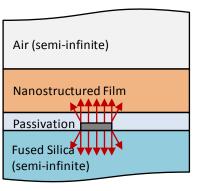
Multiphysics simulations ranging from atomic to system scale

Advanced materials development including CNT and metal nanowire interface materials and high temperature thermoelectric materials

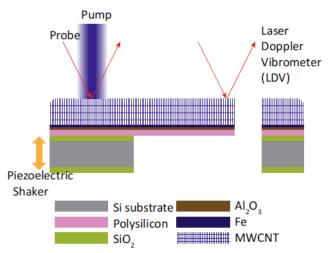
Development and application of novel thermoelectric metrology, including pico/nanosecond thermoreflectance, crosssectional IR thermometry, and MEMS-based electrothermal and mechanical characterization 5

Research Approach

U.S. Department of Energy Energy Efficiency and Renewable Energy

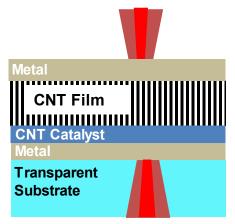

Additional Faculty & Staff beyond Pls

Prof. Mehdi Asheghi, Stanford Mechanical Engineering Dr. Yoonjin Won, Stanford Mechanical Engineering Dr. Winnie Wong-Ng, NIST Functional Properties Group Dr. Yongkwan Dong, USF Department of Physics Stanford Students: Michael Barako (NDSEG fellow) Marc Dunham (NDSEG fellow) Yuan Gao* (NSF Fellow) Lewis Hom* (NSF Fellow) Saniya Leblanc* (Sandia Fellow) Sri Lingamneni Amy Marconnet* (NSF Fellow) Woosung Park * Graduated as of start of FY13

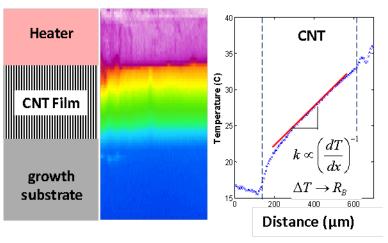

Interfaces	Nanostructured films & composites, metallic bonding	Stanford			
100%	Ab initio simulations and optimization	Bosch			
Metrology 100%					
Materials	Filled skutterudites and half Heusler intermetallics	USF			
100%	Ab initio simulations for high-T optimization	Bosch			
Durability	In-situ thermal cycling tests, properties	Stanford			
50%	Interface analysis through SEM, XRD, EDS	Bosch			
Heat sink	Gas/liquid simulations using ANSYS-Fluent	Bosch			
50%	Novel cold HX using microfluidics, vapor venting	Stanford			
System	System specification, multiphysics code	Bosch			
50%	Evaluation of research impacts	Stanford			

Approach: Thermal and Mechanical Properties

MEMS-based Thermal and Mechanical Characterization



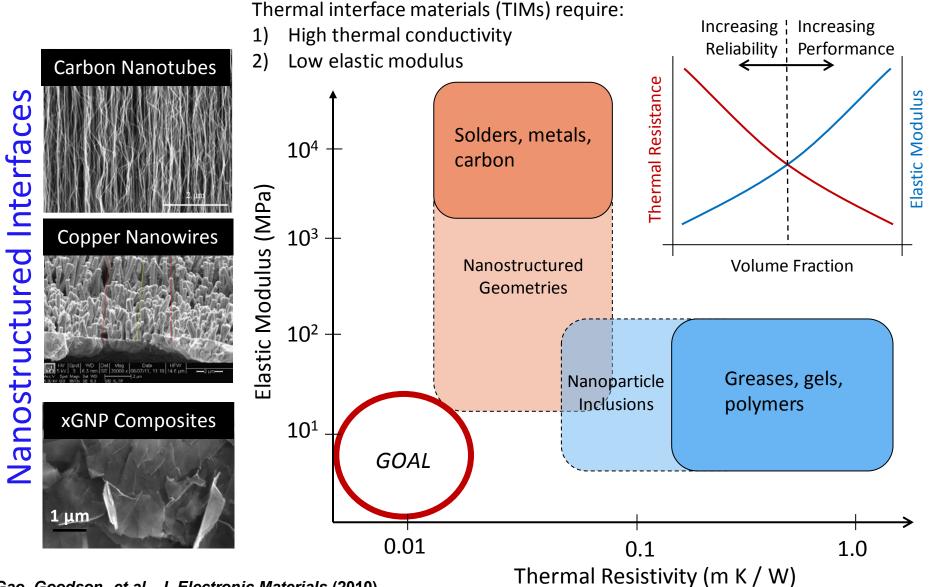
The 3ω Technique



Pico/Nanosecond Thermoreflectance

STANFORD

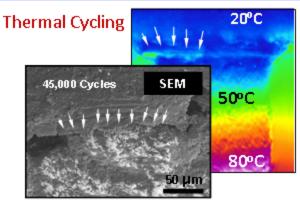
Cross-sectional IR Microscopy with in-situ Thermal Cycling


Associated Publications:

Gao,Marconnet,Goodson, et al. Barako,Gao,Goodson et al. Gao,Won,Godson, et al. Won,Gao,Panzer,Goodson, et al. Marconnet,Panzer,Goodson, et al. Gao,Shakouri,Goodson et al. Panzer,Murayama,Goodson et al. Panzer,Goodson Panzer,Dai,Goodson et al. Hu,Fisher,Goodson et al. Pop,Dai,Goodson et al. Pop,Dai,Goodson et al.

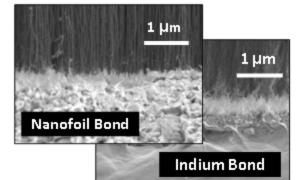
IEEE Trans. CPMT	(2013)
J. Electronic Materials	(2013)
Carbon	(2012)
Carbon	(2012)
ACS Nano	(2011)
J. Electronic Materials	(2010)
Nano Letters	(2010)
J. Applied Physics	(2008)
J. Heat Transfer	(2008)
J. Heat Transfer	(2006,07)
Nano Letters	(2006)
Physical Review Lett.	(2005)

Approach: Nanostructured TIMs

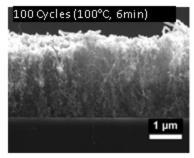


Gao, Goodson, et al., J. Electronic Materials (2010). Won, Goodson, et al., Carbon (2012a, 2012b)

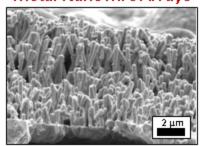
Technical Accomplishments: Stanford Overview


Thermal Cycling Failure Modes

Barako, Park, Marconnet, Asheghi, Goodson, J. Electronic Materials (2013)

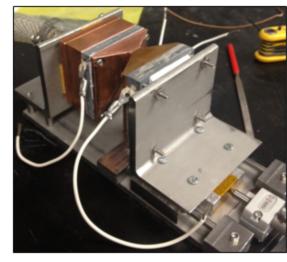

Nanostructured Interfaces

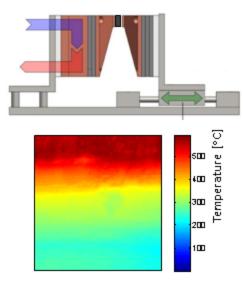
Solder-Bonded Nanotube Thermal Interface Materials

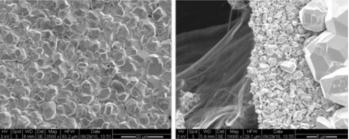


Barako, Gao, Marconnet, Asheghi, Goodson, Proc. of ITHERM (2012)

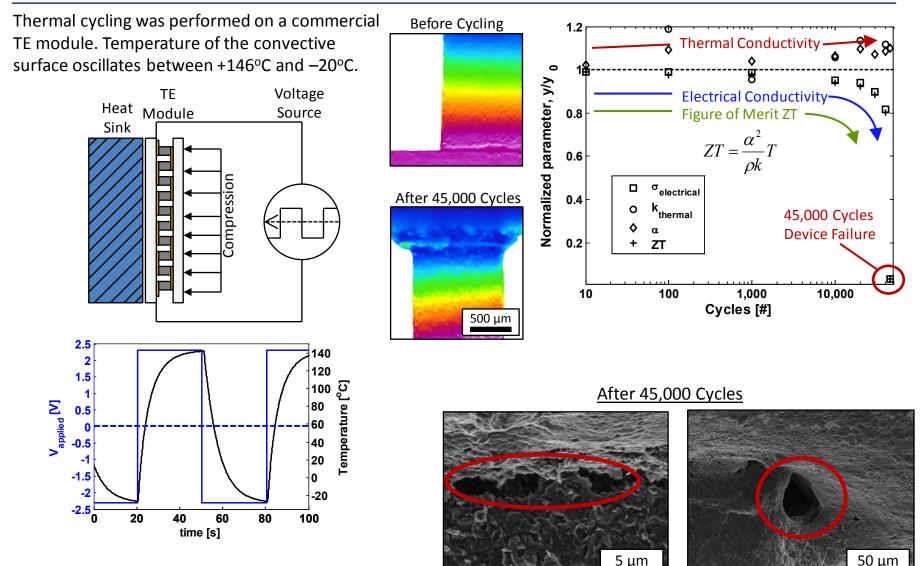
Thermal Cycling




Gao, Panzer, Goodson et al., J. Electronic Materials, 2010 Metal Nanowire Arrays

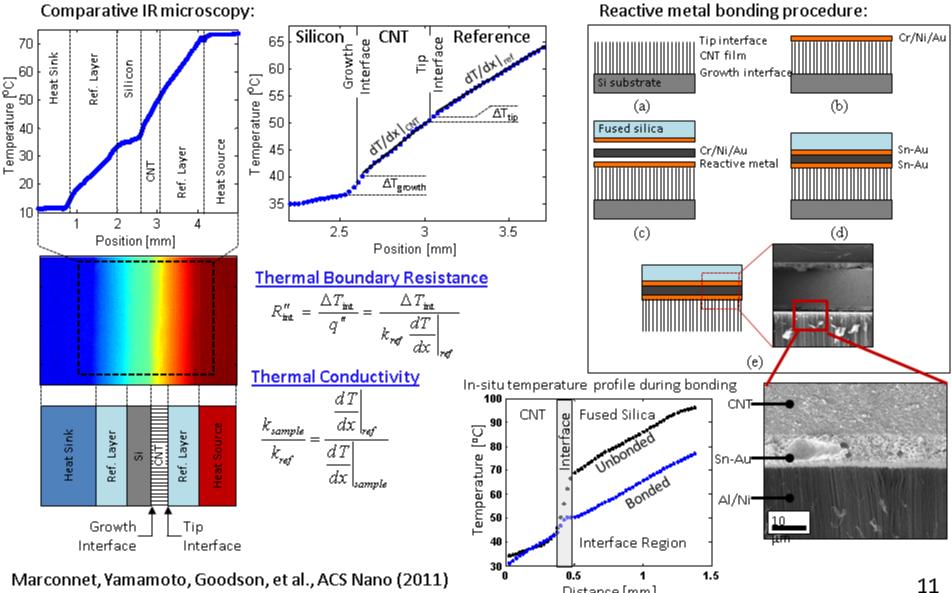

In-Situ Thermal Imaging during Cycling

High Temperature Infrared Imaging & Characterization



Nanoscale Conformable Coatings for Enhanced Thermal Conduction of Carbon Nanotube Films

Technical Accomplishments: TE Module Failure Modes with Thermal Cycling

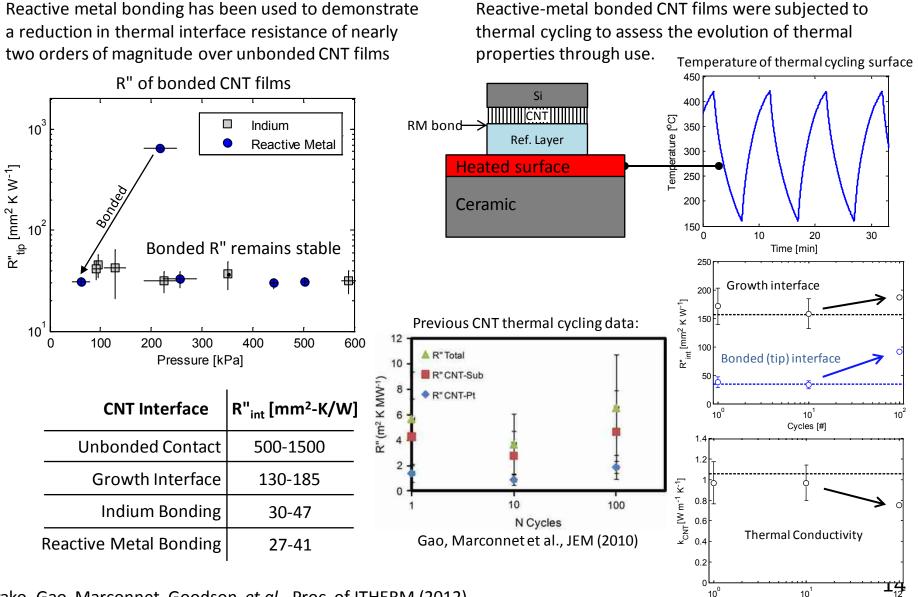


Barako, Park, Marconnet, Goodson, et al., J. Elec. Mat. (2013)

Microcracks

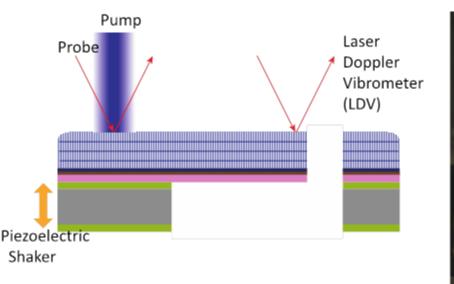
Voids

STANFORD **Technical Accomplishments:** In-Situ Thermal Imaging and Reactive Metal Bonding

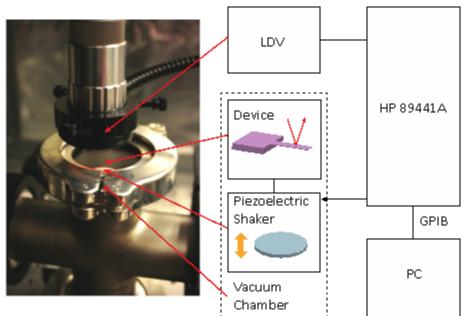

Distance [mm]

Marconnet, Yamamoto, Goodson, et al., ACS Nano (2011) Barako, Gao, Marconnet et al., Proc. of ITHERM (2012)

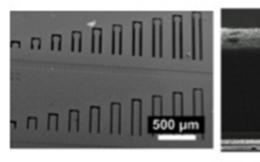
Technical Accomplishments: CNT Thermal Performance



Cycles [#]


Barako, Gao, Marconnet, Goodson, et al., Proc. of ITHERM (2012)

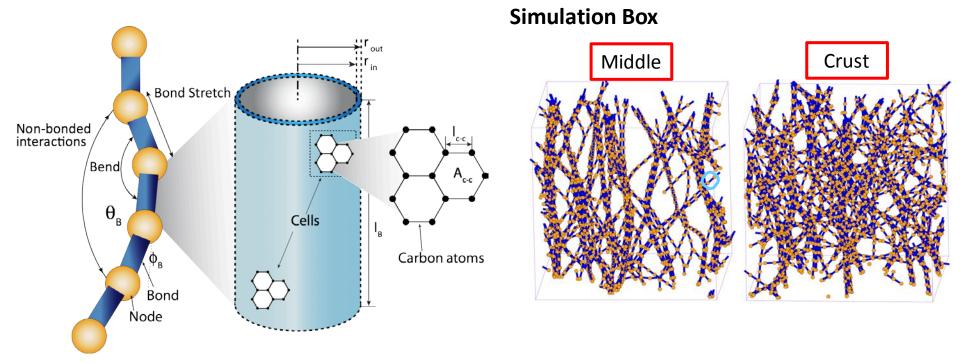
Technical Accomplishments: Mechanical Resonator Technique for CNT Arrays


Thermal and Mechanical Characterization

Experimental Setup

Resonator length and shape variation

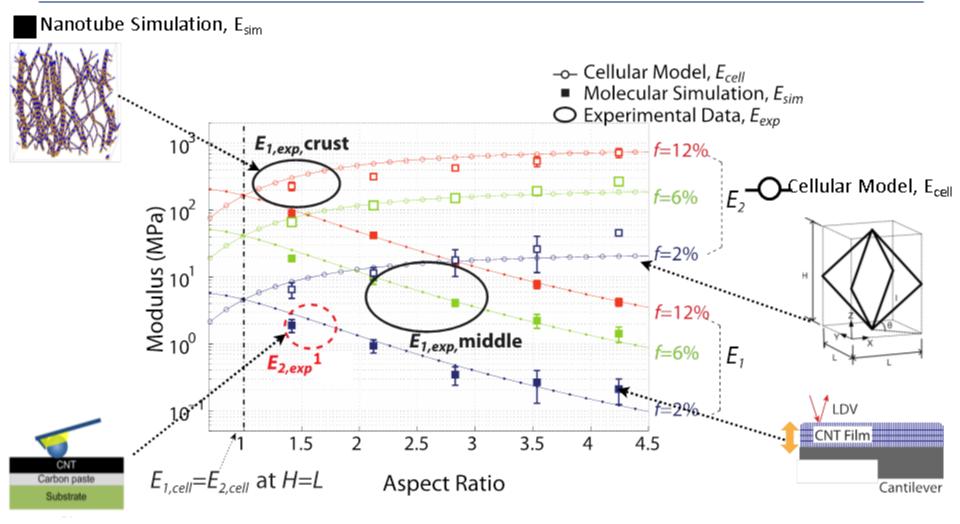
CNT on a Cantilever


- LDV (laser Doppler velocimetry) experimental setup : resonant frequency of various thickness films.
 - Resonant frequency shift : mechanical modulus
 - Ring-down and fitting measurements : quality factors

Thermal: Gao, Marconnet, Goodson et al., IEEE Trans. Comp. (2013) Mechanical: Won, Gao, Goodson et al., Carbon (2012)

Technical Accomplishments: CNT Coarse-Grained Molecular Simulation

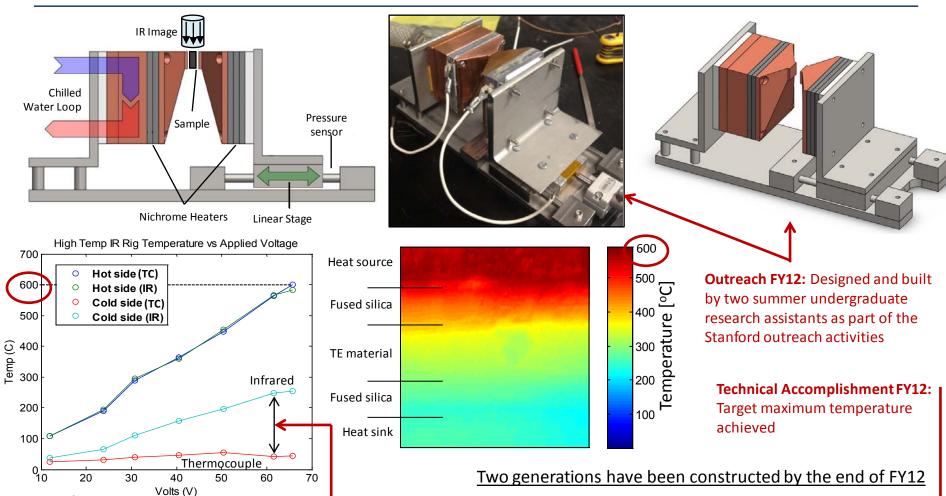
- Unit tubes act as elastic beams, showing stretching and bending behavior.
- Non-bonded nodes are interacting with van der Waals forces.
- Weak connections between nanotubes can be quantified.
- Different morphology using image analysis result can be demonstrated.


• Energy calculation:
$$E_{total} = E_S + E_B + E_{LJ} = \sum_{bond} \left(\frac{1}{2} k_S (l_B - l_{B,O})^2 + k_B (\cos \theta_B + 1) + \frac{C_{12}}{r_{CNT}^{12}} - \frac{C_6}{r_{CNT}^6} \right)$$

Won, Gao, Goodson, *et al.*, submitted and under review (2012) (with W. Cai Group, Stanford)

STANFORD

Technical Accomplishments:



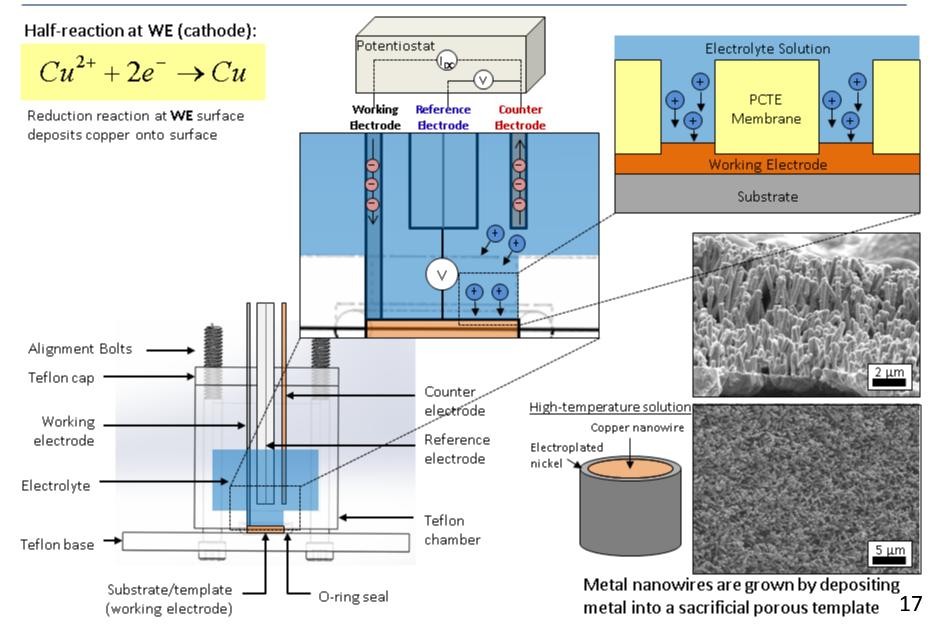
Resonator Experimental Data, E_{exp}

Nanoindentation Data, E_{exp}

Gao et al., Carbon (2012)

Technical Accomplishments: High-Temperature In-Situ Thermal Imaging

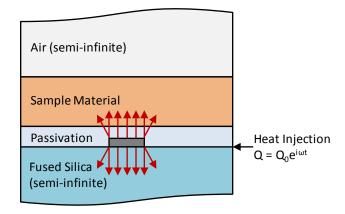
FY13 goal


For large temperature gradients, the IR signal intensity spans several orders of magnitude. It is difficult to accurately measure the signal at each pixel simultaneously under these conditions.

$$I_{rad} \propto q_{rad}'' = \varepsilon \sigma T'$$

	<u>1st Generation:</u> <u>FY11</u>	2 nd Generation: FY12	
Max T [°C]	400	>600 ←	
Time constant [min]	200	15	-
Mass [kg]	20	16 5	C

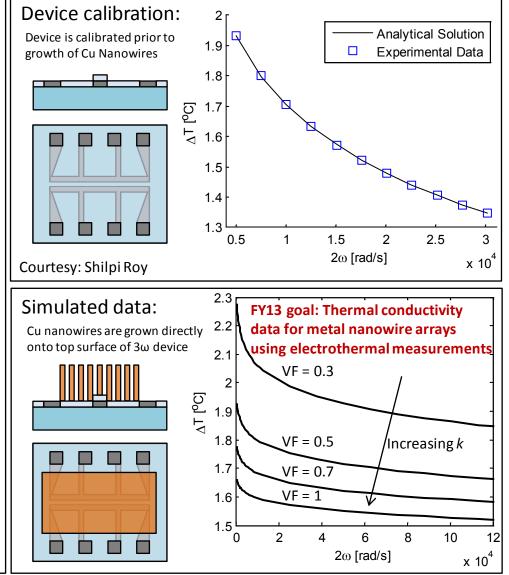
NANFORD Heat


Technical Accomplishments:

Technical Accomplishments:Image: Stanford High-sensitivity Electrothermal Interface Characterization

Measurement Overview:

Current at frequency 1ω generates Joule heating at 2ω , and the oscillating temperature of the heater is measured indirectly by detecting a voltage at 3ω


Frequency-Modulated Properties:

- $\textbf{1} \boldsymbol{\omega}: \ \textbf{Frequency of AC current source driving line heater}$
- $\boldsymbol{2\omega}:$ Joule heating at 2ω
 - Temperature fluctuation at 2ω

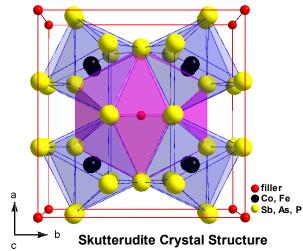
Heater resistance is perturbed at 2ω

3 $\boldsymbol{\omega}$: V = I x R leads to voltage at 3 $\boldsymbol{\omega}$

Thermal Diffusion Length: $L \propto \sqrt{-1}$

Technical Accomplishments: Stanford-USF Student Visit

During January 28th – February 1st, Stanford graduate student Michael Barako was hosted by Prof. George Nolas and Dr. Yongkwan Dong at USF to learn about TE material synthesis and characterization techniques, including:


- Hot/cold pressing
- Spark plasma sintering (SPS)
- Arc melting
- X-ray diffraction
- Energy-dispersive spectroscopy (EDS)
- Simultaneous thermal, electrical, and Seebeck characterization

Approach: Bulk TE Materials for Automotive Applications

Glen Slack initiated the PGEC concept with skutterudites:

- ✓ Fillers should be loosely bond to the cage-forming atoms.
- ✓ Fillers have large atomic displacements.
- ✓ Fillers act as independent oscillators ("rattlers").
- Interaction of rattlers with the normal modes should lower lattice thermal conductivity.
- Phonon-scattering centers ("rattlers") should not greatly affect electronic properties.
- Yb partially-filled skutterudites
 - Partial filling optimizes lattice thermal conductivity reduction¹
 - Yb possesses an intermediate valence in CoSb₃ thereby maximizing the filler concentration while minimizing the added carriers²
- > P-type partially filled skutterudites (high-T measurements at NIST, Clemson U. & ORNL)
- > Amorphous intermetallic alloys³ (in collaboration with General Motors)
- > Bi₂Te₃-alloys for High Resolution Infra-Red Thermometry (in collaboration with Marlow Ind.)
- > Other material systems with potential for enhanced thermoelectric properties
 - 1. G.S. Nolas et al, Phys. Rev. B 58, 164 (1998)
 - 2. G.S. Nolas et al, Appl. Phys. Lett. 77, 1855 (2000)
 - 3. G.S. Nolas and H.J. Goldsmid, Phys. Stat. Sol. 194, 271 (2002)

http://shell.cas.usf.edu/gnolas

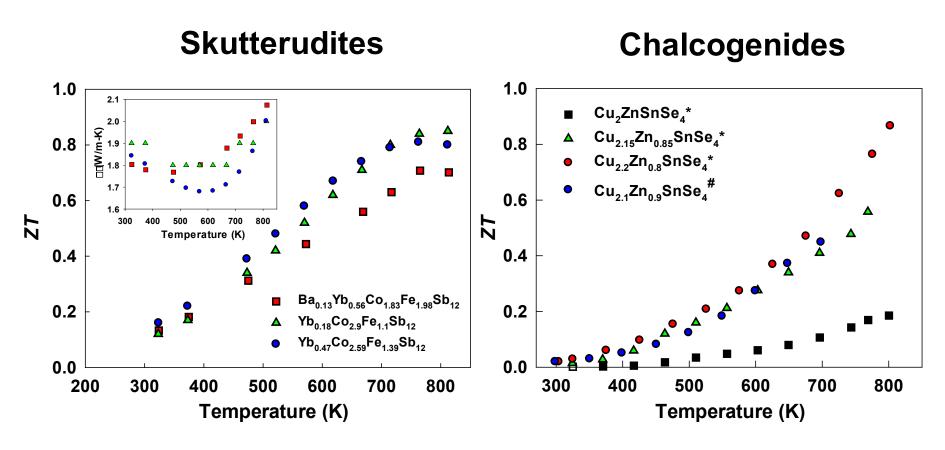
Novel Materials Laboratory University of South Florida

Approach: Experimental Capabilities at USF

Synthesis

Furnaces: crystal growth, annealing, arc melting, induction, SPS
 Preparation: glove boxes, hoods, wire saw & diamond wheel
 Supplemental: glass blowing station, ultrasonic cleaning
 Densification: hot press & spark plasma sintering with custom designed and built die tooling, separate sample preparation areas

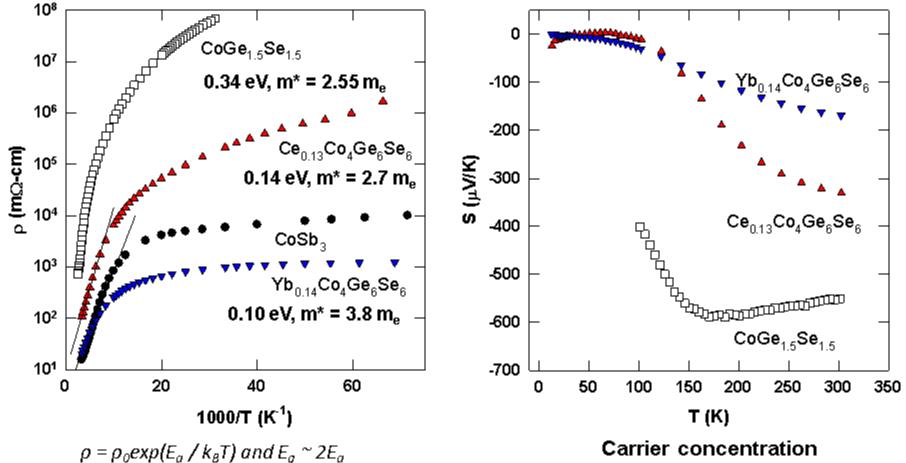
Transport: Low-T S, ρ, κ & Hall w/sample mounting stations, RT S & ρ
 Characterization: DTA/TGA, XRD, SEM w/EDS, optical spectroscopy


http://shell.cas.usf.edu/gnolas

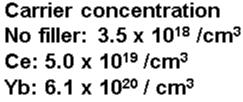
Novel Materials Laboratory University of South Florida

Technical Accomplishments: High ZT p-type Materials

* Current work at USF# M.-L. Liu et al, Appl. Phys. Lett. 94, 202103 (2009)



Novel Materials Laboratory


University of South Florida

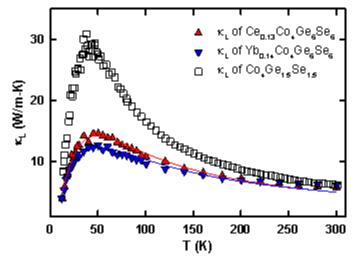
5

Technical Accomplishments: Transport Measurements & Analyses

CoSb₃: D. Mandrus, et al, Phys. Rev. B52, 4926 (1995) CoGe_{1.5}Se_{1.5}: G.S. Nolas et al, Phys. Rev. B68, 193206 (2003) Y. Dong et al., Phys. Rev. B, submitted

Novel Materials Laboratory University of South Florida

Technical Accomplishments: Transport Measurements & Analyses


Fit of κ_L using the Debye approximation:

$$\kappa_{L} = \frac{k_{B}}{2\pi^{2}\upsilon} \left(\frac{k_{B}T}{\hbar}\right)^{3} \int_{0}^{\theta_{D}/T} \frac{x^{4}e^{x}}{\tau_{C}^{-1}(e^{x}-1)^{2}} dx \qquad x = \frac{\hbar\omega}{k_{B}T}$$

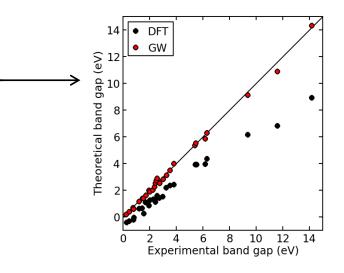
Phonon scattering relaxation time:

$$\tau_C^{-1} = \frac{\upsilon}{L} + A\omega^4 + B\omega^4 T \exp\left(-\frac{\theta_D}{3T}\right) + \frac{C\omega^2}{\left(\omega_0^2 - \omega^2\right)^2}$$

	L	Α	В	С	ω ₀	
	(µm)	(10 ⁻⁴³ s ³)	(10 ⁻¹⁸ s·K ⁻¹)	(10 ⁻³³ s ⁻³)	(10^{12} s^{-1})	
C0Ge _{1.5} Se _{1.5}	1.3	4.7	6. 7	-	-	
Ce _{0.13} Co ₄ Ge ₆ Se ₆	1.1	21	5.8	4.5	15	
Yb _{0.14} Co ₄ Ge ₆ Se ₆	1.3	30	4.8	4.8	11	

CoGe_{1.5}Se_{1.5}: G.S. Nolas et al, Phys. Rev. B 68, 193206 (2003) Y. Dong et al, Phys. Rev. B, submitted

Novel Materials Laboratory University of South Florida

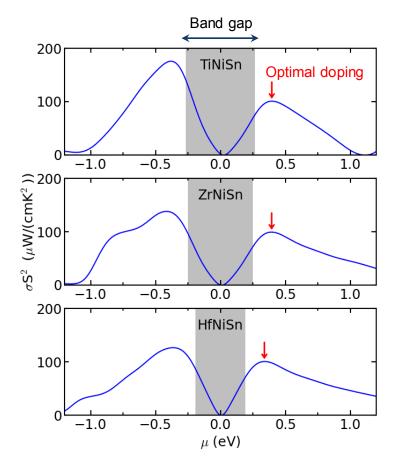

Electron and phonon transport coefficients are computed by solving Boltzmann transport equation. Requires the following as input data:

• Electronic band structure

We previously used DFT (density functional theory) which is known to underestimate band gaps.
We recently switched to GW method (many-body)

perturbation theory) which gives accurate band gaps.

- Electronic relaxation time
 - Constant electronic relaxation time fit to experiment
- Phonon band structure
 - From DFPT (density functional perturbation theory)
- Phonon relaxation time
 - From DFPT (density functional perturbation theory)



Data taken from: S. G. Louie in *Topics in Computational Materials Science*, edited by C. Y. Fong (World Scientific, Singapore, 1997)

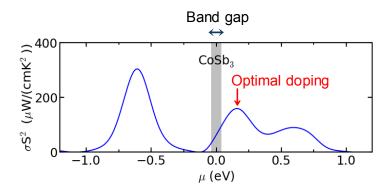
Technical Accomplishments: Electronic transport

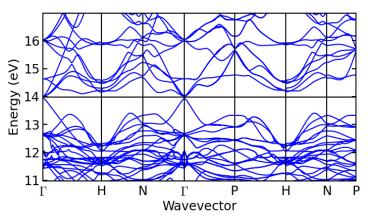
Optimization of power factor of n-type Half-Heuslers by varying the carrier concentration (doping) within the Boltzmann formalism

 $T = 400^{\circ}C$

	E_g	σS^2	μ	Х
TiNiSn	0.53	101	0.39	0.031
ZrNiSn	0.50	100	0.39	0.020
HfNiSn	0.38	101	0.34	0.019

- E_g Band gap (eV)
- σS^2 Power factor ($\mu W/(cm K^2)$)
- μ Chemical potential (eV)
- x Doping (electron/unit cell)


Optimal compositions: (Ti|Zr|Hf)NiSn_{0.98}Sb_{0.02}


Research and Technology Center North America

Technical Accomplishments: Electronic transport

Optimization of power factor of n-type Skutterudites by varying the carrier concentration (doping) within the Boltzmann formalism

Band structure

			Co Sb	T = 400 ⁰	С
	E_g	σS^2	μ	x	
CoSb ₃	0.08	160	0.16	0.205	
	E _g σS² μ x	Power Cherr	nical pot	′) µW/(cm K²)) ential (eV) on/unit cell)	

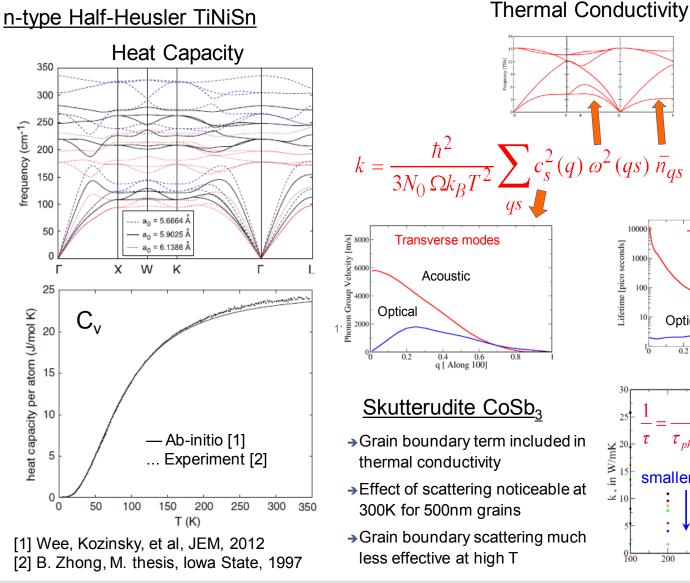
Optimal compositions: (Ba_{0.10}|La_{0.07}|Yb_{0.07})Co₄Sb₁₂

Research and Technology Center North America

Quasi-harmonic analysis of Skutterudites

- Capture first-order anharmonic effects (nonideal crystal) at elevated T →
- Compute vibrational structure: phonon spectrum at different distortions →
- Using a model equation of state predict realistic measurable properties →

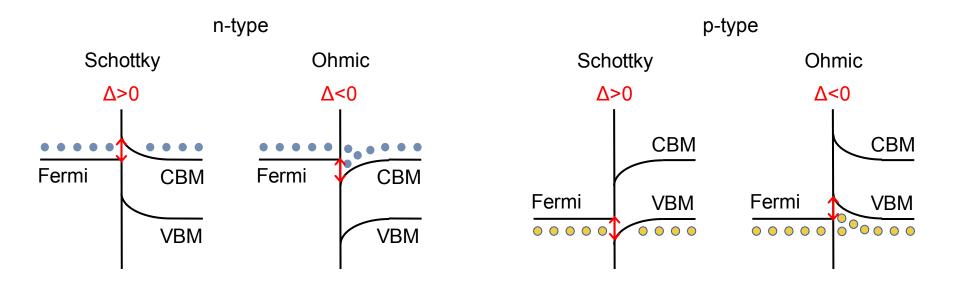
- - Estimate formula^[1] for k adapted to ab-initio $k_{l,T=\Theta_D} \approx \frac{BM\delta \Theta_D^2}{n^{2/3}\gamma^2}$ Good agreement for CoSb₃ Need to test applicability limits
 - [1] Slack & Tsoukala, J. Appl. Phys. 76, 1665 (1994) [2] Zhao et al, Journal of Alloys and Compounds 477, 425 (2009)
 - [3] Slack & Tsoukala, J. Appl. Phys. 76, 1665 (1994)
 - [4] CRC Handbook of Chem and Phys, pp. 12-85 (2009)


CoSb ₃ results (300K)	Computed	Expt
CTE α (10 ⁻⁶ /K)	10	10.5 [2]
Bulk modulus B (GPa)	100.1	112 ^[3]
Debye temp. $\Theta_{\rm D}$ (K)	304	307 [4]
Gruneisen param. γ	1.66	
Th. cond. κ (W/mK)	4.8	5.0 ^[4]

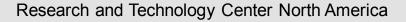
Research and Technology Center North America

→

Technical Accomplishments: Heat Capacity and Thermal Conductivity



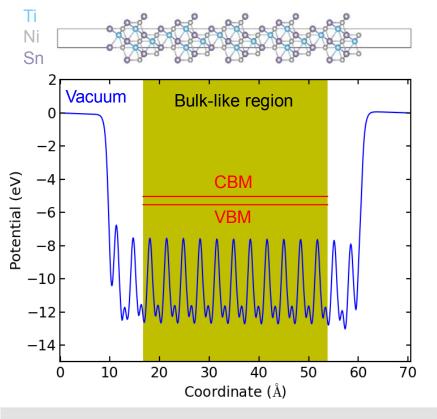
 $\sum c_s^2(q) \,\omega^2(qs) \,\bar{\bar{n}}_{qs} \,(\bar{n}_{qs})$ 10000 Transverse modes 1000 Acoustic 100 E 10 Optical 0.4 0.6 q [Along 00q GX] 0.2 0.8 Pure CoSb. (\mathbf{q}, n) 10 nm50 nm 100 nm


 $au_{\it ph-ph}$ 300 nm 500 nm 1000 nm smaller grains 300 400 500 Temperature, in K 100 200 600 700

Research and Technology Center North America

Technical Accomplishments: Schottky barriers

- Schottky barrier at the interface between metal and semiconductor.
- Schottky barrier height is given by the difference between the workfunction of metal and CBM of n-type (VBM of p-type) semiconductor (Schottky-Mott model).
- Our goal is to identify metals which form low-resistance Ohmic electrical contacts (Δ <0) to thermoelectric materials.
- We compute Schottky barrier heights and perform screening of different metals.


30

Technical Accomplishments: Schottky barriers

Screening of metals for electrical contacts to n-type half-Heusler TiNiSn by computing Schottky barrier heights at the interface between metal and thermoelectric material.

1. Compute VBM, CBM relative to vacuum:

Research and Technology Center North America

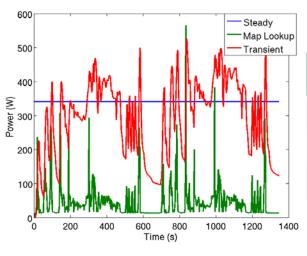
н											He						
Li	Be											Ne					
Na	Mg	different metals								AI	Si	Р	S	Cl	Ar		
к	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
Cs	Ва	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	ΤI	Pb	Ві	Ро	At	Rn
Fr	Ra	Lr Rf Db Sg Bh Hs Mt Ds Rg Cn															
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb		
		Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
																•	
	Schottky CTE mismatch > 10%																
			Δ	<u> </u> <	0.5	eV		(co	effic	ient	t of	ther	mal	exp	bans	sion)
	Ohmic																

3. Candidates for low-resistance Ohmic electrical contacts to n-type half-Heusler TiNiSn: Ti, V, Sb, Ce

Technical Accomplishments: Transient Simulation of TEGs

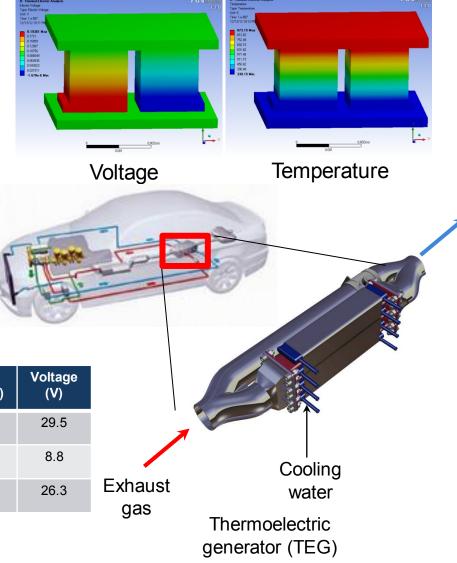
1D Model Features:

Electrical Network


- Series/Parallel connectivity can be prescribed
- Overall system power/current/voltage characteristics predicted

Multiple 1D elements

- Different 1D elements tracked along the gas channel
- → Effect of varying length/width considered
- Different arrangement of devices also considered


Transient Analysis

Effect of heat capacity of different layers considered

Approach	oproach Mean Power (W)					
Steady	341.6	29.5				
Map Lookup	41.5	8.8				
Transient	289.0	26.3				

Research and Technology Center North America

<u>Industry Initiatives in Science and Math Education (IISME) – Summer 2011</u> *Mentorship of a public high school teacher for summer research experience and curriculum development using thermoelectrics*

- Designed engineering course which is now taught at a public high school
- Experienced first-hand application of thermoelectric modules

<u>K-12 Educational Outreach</u> – Fall 2011-present Students at Stanford are now partnered with a public high school to provide materials and mentors for a TE design lab

- Introduces high school students to thermoelectric modules and their applications each semester
- Hands-on design lab to engage students in engineering

Instructional YouTube Videos on Thermoelectric Metrology

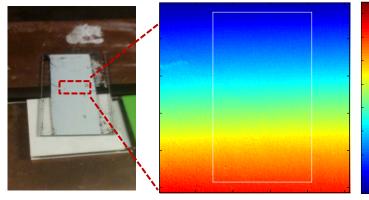
Movies were produced to describe heat transfer metrology and were made publicly available via Stanford's YouTube channel

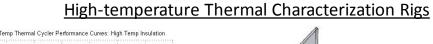
- Videos describe infrared thermometry, thermocouple thermometry, heat sink analysis, and thermal boundary resistance
- Produced through the mentorship of a novice engineering student under the guidance of a more experienced senior graduate student

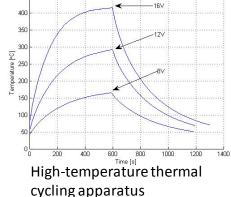
55

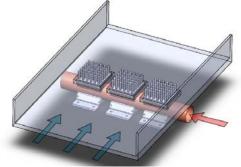
50

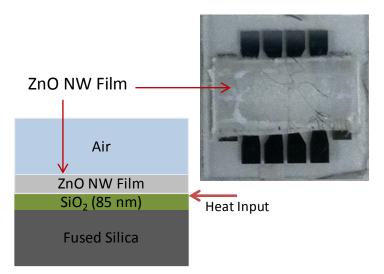
45


35


Undergraduate Research Mentorships – Jan 2012 - present

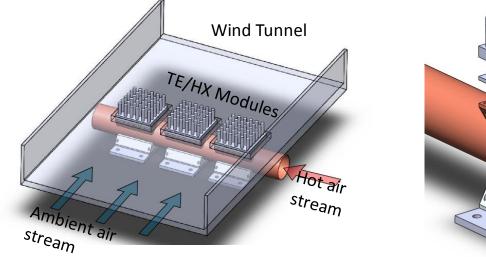

Mentorship of a four (4) undergraduate students for graduate level research experience

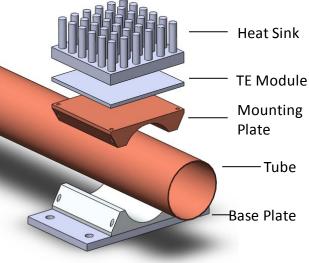

ZnO Nanowire Film Thermoelectric Characterization


IR imaging to measure Seebeck coefficient Courtesy: Jena Barnes

TEG for waste heat recovery testing apparatus

 3ω measurement of cross-plane thermal conductivity Courtesy: Maneeshika Madduri


High-temperature IR microscopy apparatus


Courtesy: Kellen Asercion and Santiago Ibarra

<u>Undergraduate Thermoelectrics Lab</u> – On track for Fall 2013

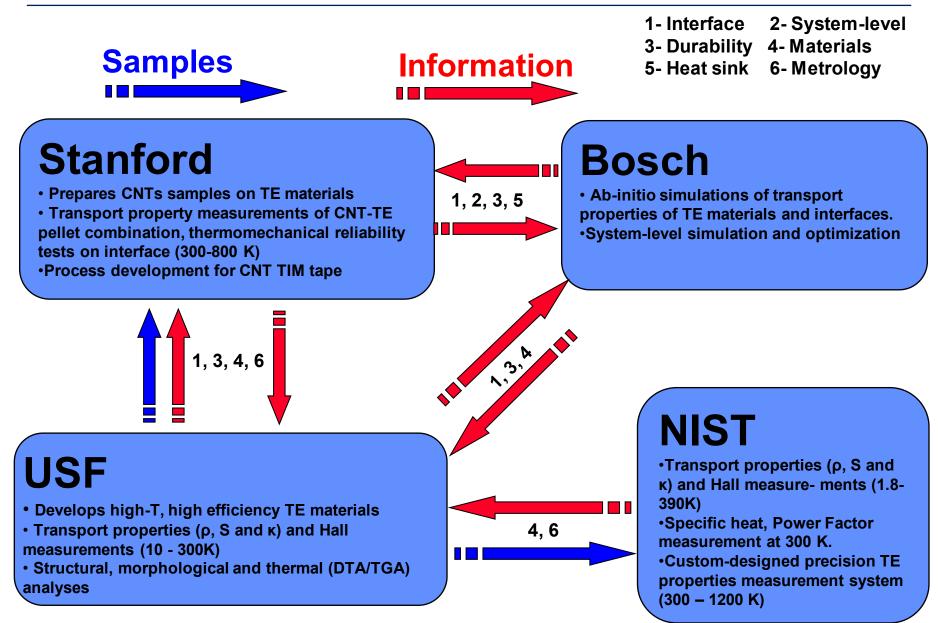

TEG Waste Heat Recovery in Stanford Undergraduate Heat Transfer Laboratory Heat sink design competition to maximize thermoelectric power generated using a hot air source and an ambient air sink. Designed by two undergraduate students through the Summer Undergraduate Research Institute (SURI) at Stanford under the mentorship of the Goodson group.

Stanford's heat transfer course (ME131A) includes a thermoelectrics laboratory experience.

- Designed in conjunction with IISME teacher
- Lab exercise uses infrared microscopy with thermoelectric modules

Outreach at the University of South Florida:

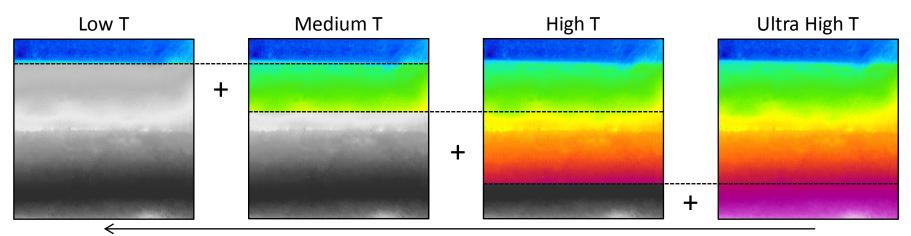
➢ Middle and high school science teachers from Hillsborough county (where USF is located) with an interest in applied researcher were given an overview of our recent research, including a lab tour, on June 20, 2012, with a question and answer period following the tour.


➤ Walter Hill, REU student from Jacksonville University, was involved in all aspects of our lab group's activities, including weekly lab meetings, lab presentations and studying scientific articles. He was encouraged to take charge of specific research tasks and obtained tangible results that he will be presenting at the upcoming American Physical Society March Meeting in Baltimore. He also presented his work by oral and poster presentation while at USF. As well as experimental skills, he interacted with mentor (Dr. Y. Dong), PI (Prof. G.S. Nolas) and the graduate students in the lab in discussing scientific aspects of the research project and obtained experience in a team oriented interdisciplinary research environment.

Novel Materials Laboratory University of South Florida

Collaboration & Coordination

Proposed Future Work

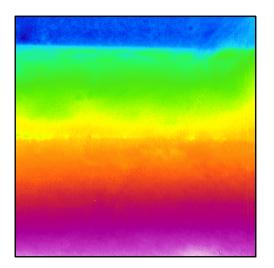

- <u>Bulk TE Materials</u>: Develop modified skutterudites and related derivatives, half-Heusler alloys, and novel p-type chalcogenides
- Integration of Nanostructured TIMs with Bulk TE Materials: CNT arrays bonded to bulk TE materials and metal nanowire arrays grown directly on surface of bulk TE materials, and relevant thermoelectric properties measured of integrated thermoelectric-TIM system.
- <u>Nanostructured Metal Thermal Interface Materials</u>: Investigate thermal, mechanical, and electrical properties of metal nanowires, optimization of materials, geometries, and surface treatments for operation at 600°C.
- <u>High-T (ZT)_{eff} Characterization Facility Implementation</u>: Validation of experimental setup using Bi₂Te₃-alloys standards and novel skutterudites and Half-Heusler alloys produced by USF partners.
- <u>Ab-Initio Simulations</u>: Calculation of transport of metal-semiconductor interfaces including focus on phase stability, ab-initio calculation of electronic relaxation time, computational screening of skutterudite and half-Heusler compositions with the goal to maximize their power factors

Summary Slide

- With this award, DOE & NSF are enabling an academic-corporate team to focus on the key practical challenges facing TEG implementation in vehicles: interfaces, system-relevant metrology, and materials compatibility
- We are developing metrology for fundamental properties of nanostructured interfaces, as well as (ZT)_{eff} metrology for half-Heusler and skutterudite thermoelectrics considering interfaces. Simulations include atomistic and ab initio results for TE materials and interfaces, and system & heat exchanger level optimization with the corporate partner.
- Key FY2012 results include:
 - (a) process development of CNT tape and several bonding options (Stanford)
 - (b) detailed mechanical characterization of CNT films (Stanford)
 - (c) design and fabrication of electrodeposition system for metal nanowire fabrication and characterization (Stanford)
 - (d) demonstration of a high-temperature IR microscopy apparatus capable of reaching the target temperature of 600°C (Stanford)
 - (e) development of ab-initio simulations for transport properties in TE materials (f) process development (arc melting, melt spun) for bulk TE materials (USF)

Technical Backup Slides

Technical Accomplishments:

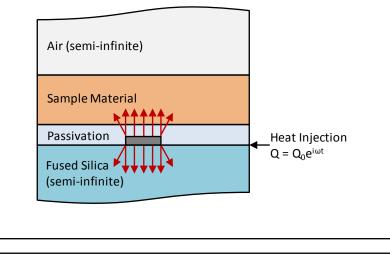


Increasing Integration Time of IR CCD camera

The high temperature challenge: $I_{rad} \propto q''_{rad} = \varepsilon \sigma T^4$ For large temperature gradients, the IR signal intensity spans several orders of magnitude. It is difficult to accurately measure the signal at each pixel simultaneously under these conditions.

FY13 goal:

We propose to use a variable exposure sensitivity to record four images sequentially, each with different CCD integration times. A composite image is then produced from the independent images.



Approach: 3ω Experimental Analysis

Measurement Overview:

Current at frequency 1ω generates Joule heating at 2ω , and the oscillating temperature of the heater is measured indirectly by detecting a voltage at 3ω

Frequency-Modulated Properties:

- 1ω : Frequency of AC current source driving line heater
- **2ω**: Joule heating at 2ω

Temperature fluctuation at 2ω Heater resistance is perturbed at 2ω

3 $\boldsymbol{\omega}$: V = I x R leads to voltage at 3 $\boldsymbol{\omega}$

Thermal Diffusion Length: $L \propto \sqrt{\frac{\alpha}{\omega}}$

Feldman Solution to Heat Transfer in Multilayered Structure:

 $\frac{d^2T}{dz^2} + i\frac{\omega}{\alpha}T = 0$ 1D, steady heat equation modulated at frequency ω General solution $T(z) = T_j^+ \exp(u_j z) + T_j^- \exp(-u_j z)$ where $u_j = -i \frac{\omega}{\alpha_j}$ Internal boundary conditions $T_i(\xi^{-}) = T_{i+1}(\xi^{+})$ $k_i \frac{dT_i}{dz} = k_{i+1} \frac{dT_{i+1}}{dz}$ $T_0 = T_0^+(0)$ External boundary conditions: Semi-infinite media at T_{inf} $T_{N+1} = T_{N+1}^{-}(z_N)$ $\Delta T = \frac{2V_{3\omega} dT}{I_{PMS}}$ Temperature rise at heater line as measured by $V_{3\omega}$

Feldman, High Temperatures – High Pressures, 1999