Thermoelectric Mechanical Reliability

A. A. Wereszczak and H. Wang Oak Ridge National Laboratory

R. McCarty, A. Thompson, and J. Sharp Marlow Industries, Inc.

2012 Vehicle Technologies Annual Merit Review and Peer Evaluation Meeting Arlington, VA 15 May 2012

> Project ID #: pm012_wereszczak_2012_o

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start: October 2006
- CRADA start: March 2009
- Project end date: March 2013 (1-yr extension pending)
- Percent complete: 85%

Budget

Total project funding

	FY09	FY10	FY11	FY12
DOE	\$300K	\$300K	\$300K	\$375
Marlow Ind.	\$75K	\$150K	\$150K	\$150
	77 CK			+

Barriers

- Barriers addressed
 - 2/3 chemical energy in automotive fuel is rejected to atmosphere as waste heat
 - Thermomechanical stresses must be managed and TE material strength improved to fully exploit TE devices
 - TE materials are inherently brittle and susceptible to thermal-induced fracture
- Targets*
 - 5000h life or 10 yr or 150k mile lifetime
 - Brittle bulk materials must survive thermal and mechanical stresses for life

Partners

- Marlow Industries (CRADA)
- General Motors (indirectly)

* "A Science-Based Approach to Development of Thermoelectric Materials for Transportation Applications, Office of FreedomCAR and Vehicle Technologies, August 8, 2007

Objectives

- Measure needed thermomechanical and thermophysical properties of candidate thermoelectric materials (TEMats) considered for waste heat recovery and cooling applications in vehicular applications.
- Combine measured data with established probabilistic reliability and design models to optimally design automotive and heavy vehicle thermoelectric devices (TEDs) for heat recovery and cooling.
- Coordinate international round-robin testing and measurement of transport properties with the intent to improve their consistency and validity.

Milestones

- FY11:
 - Generate thermoelastic and mechanical property database as a function of temperature on Marlow's candidate p- and ntype TEMats as they are developed
 - Provide mechanical characterization of other material constituents used in the TEDs.
- FY12:
 - Measure mechanical, thermoelastic, and thermoelectric properties of Marlow-fabricated TEMats to enable operation up to 500°C.
 - Complete report of international round-robin test results on Marlow bismuth telluride to IEA-AMT and initiate a new high temperature thermoelectric round-robin measurement on PbTe or skutterudite ranging between 20-500°C.

Technical Approach

- Measure Young's Modulus, Poisson's ratio, CTE, thermal conductivity, heat capacity, and strength as a function of temperature of candidate Marlow (and General Motors) TEMats.
- Perform fractography on strength specimens, identify failure initiation sites and strength-limiting flaw types, and recommend processing recommendations that will improve strength.
- Use probabilistic design and reliability methods with candidate and prototype TEDs.
- Provide mechanical evaluation of the other material constituents used in Marlow's TEDs.
- Coordinate international round-robin testing and measurement of transport properties with the intent to improve their consistency and validity.

Technical Accomplishments – 1 of 11

- Strength tested hundreds of bend bars fabricated by Marlow as part of ORNL-Marlow CRADA
- Evaluated stresses in metallization used with TEDs as part of ORNL-Marlow CRADA
- Neutron diffraction explored as a means to estimate residual stresses in thermoelectric legs in devices
- Coordinated international round-robin testing and measurement of transport properties.

Technical Accomplishments – 2 of 11

Why is Mechanical Strength Important to TEMats?

$$R_{Therm} = \frac{S_{Tens}(1-\nu)\kappa}{CTE \bullet E}$$

Kingery, J. Am. Cer. Soc., 38:3-15 (1955).

TZ

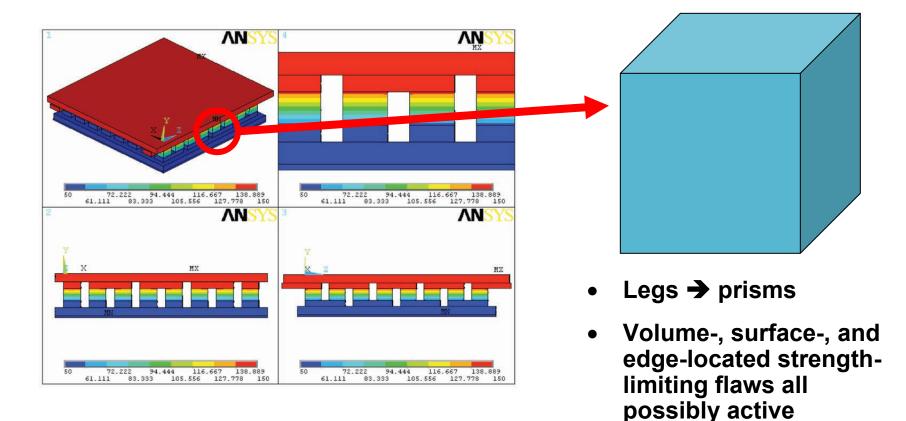
R_{Therm} = Thermal resistance parameter (the larger the better)

- v = Poisson's ratio
- κ = Thermal conductivity
- **CTE = Coefficient of thermal expansion**
 - **E** = Elastic modulus

Griffith Criterion

$$S_{Tens} = \frac{K_{Ic}}{Y\sqrt{c}}$$

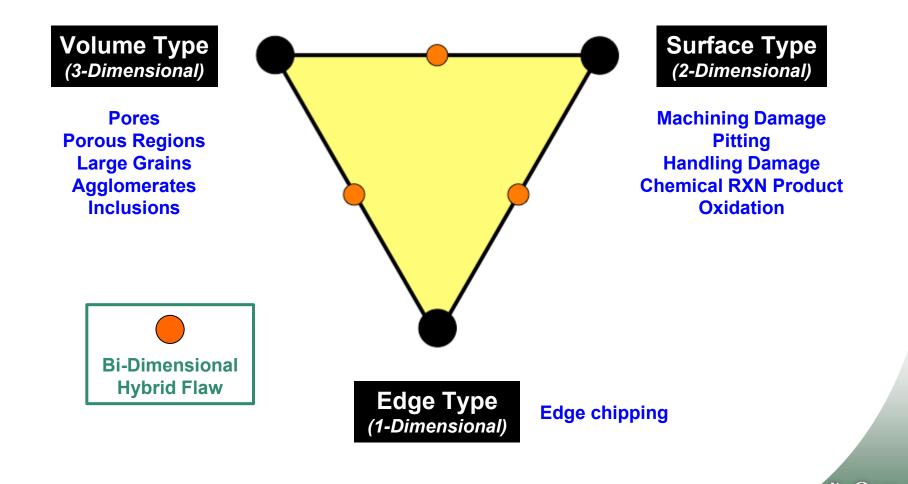
KIc = Fracture toughness Y = Crack shape factor c = Griffith flaw size


Must seek to minimize c!

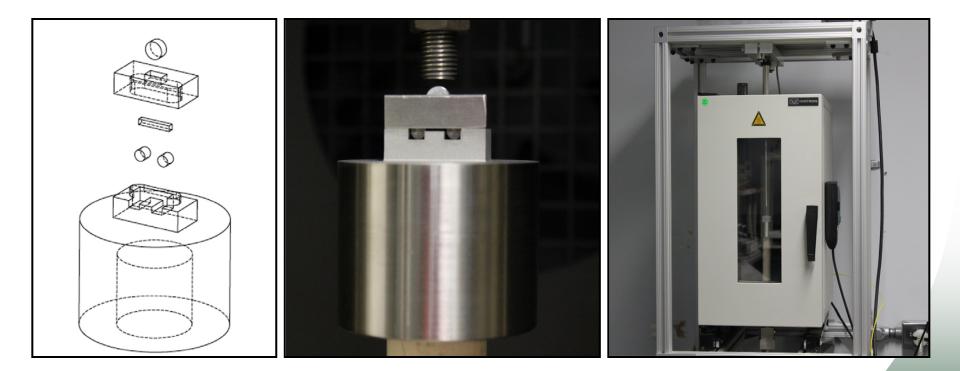
Tensile Strength << Compressive Strength Manage tensile stress for conservative design

Technical Accomplishments – 3 of 11

TE Legs and Potentially Active Flaws:

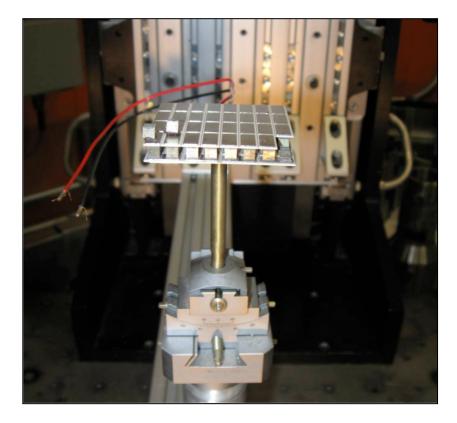


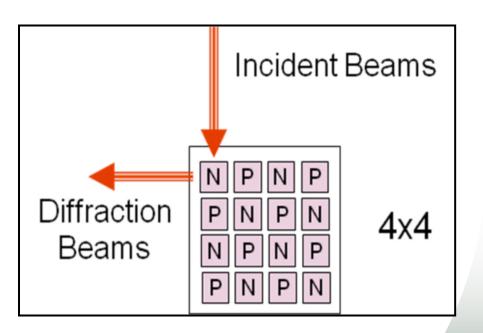
e.g., 3 x 3 x 3 mm


Technical Accomplishments – 4 of 11

Strength-limiting flaw classification for brittle materials; the potential existence of all are in unchamfered TE Legs

Technical Accomplishments – 5 of 11


- There was a need in FY11 to test hundreds of specimens at T < 300°C
- New fixturing was designed and fabricated to facilitate rapid and valid flexure testing of TEMat bend bars



Technical Accomplishments – 6 of 11

Neutron Diffraction Used to Measure Residual Stresses in Thermoelectric Devices

Technical Accomplishments – 7 of 11

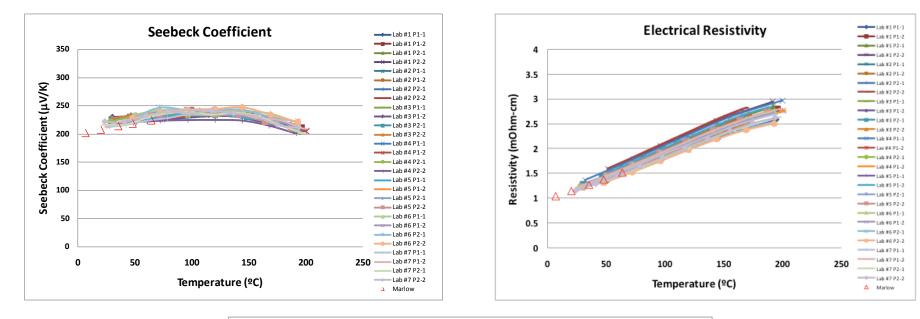
IEA-AMT Annex VIII Support and Participants

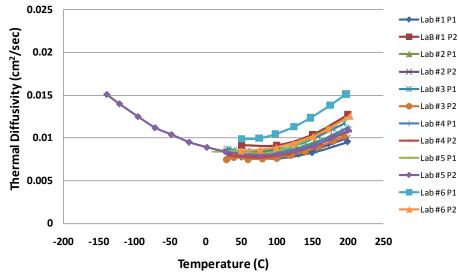
- IEA-AMT Thermoelectric Annex
 - Annex lead: Oak Ridge National Laboratory (H. Wang)
 - USA: Clemson (T. Tritt, S. Zhu); Marlow (J. Sharp); Corning (A. Mayolet, C. Smith, J. Senawiratne) and ZT-Plus (F. Harris)
 - China: SICCAS (SQ Bai, L. Chen)
 - Canada: Natural Resource Canada (J. Lo); University of Waterloo (Holger Kleinke); University of Quebec at Chicoutimi (Laszlo Kiss)
 - Germany: Fraunhofer IPM (H. Böttner, J. König)
 - International Observer: Japan: AIST (R. Funahashi)
 - International Observer: Korea: KERI (H. W. Lee)
 - ORNL Support: HTML (E. Lara-Curzio), W.D. Porter, and W. Cai

Technical Accomplishments – 8 of 11

Marlow Materials Selected for Transport Properties Round-Robin Tests

- Materials: Bi₂Te_{3.005} (n-type) Bi_{0.5}Sb_{1.5}Te₃ (p-type)
- Four-sample Sets
 - Thermal diffusivity: 12.7 mm diameter disk
 - Specific heat: 4 mm diameter disk
 - Seebeck coefficient and electrical resistivity:
 2 x 2 x 15 mm³ bar, 3 x 3 x 12 m³ bar
- Temperature range: 20-200°C
- Round-robin plans:
 - Use best practice in each lab
 - Focusing on one specific material
 - Develop test procedures
 - Round-robin 1 focus: n-type and p-type materials
 - Round-robin 2 focus: p-type materials


Technical Accomplishments – 9 of 11


Round-Robin #2 Started in October 2010

- Procedures for DSC prepared by ORNL
- Two sets of p-type samples
 - Set #1: ORNL -> Clemson-> Corning -> ZT-Plus -> Germany -> China -> Canada
 - Set #2: China -> (Japan) -> Germany -> ORNL -> Clemson-> Corning -> ZT-Plus -> Canada
- Completed in July 2011
- Report to IEA-AMT: October 2011

Technical Accomplishments – 10 of 11

Managed by UT-Battelle for the Department of Energy Second Laboratory

Technical Accomplishments – 11 of 11

Round-robin observations so far:

- IEA-AMT is addressing the important issue of measurement and standardization of thermoelectric properties
- Significant measurement issues were observed especially in specific heat and electrical resistivity
- P-type material was selected for 2nd round robin test
- Good agreements in Seebeck coefficient and electrical resistivity
- Thermal diffusivity in good agreement expect for one test (data analysis)
- Specific heat remains an issue for reliable ZT

Future Work

 Continue to collaborate with Marlow Industries, a manufacturer of high-temperature-capable TEMats and TEDs, to contribute to the reliability improvement of their candidate TEMats

- Mechanically evaluate constituents (e.g., interconnects) in TEDs and TEDs (themselves)
- Support other mechanical reliability issues associated with the TEDs, for example, combating potential residual stresses associated with metallization

Summary

- Property evaluations
 - Flexure strength evaluated of refined Marlow TEMats.
 - Residual stresses estimated in metallization layers in Marlow TEDs.
 - Neutron diffraction explored as means to estimate residual stresses.
- Property measurement consistency
 - International round-robins examining property measurements of relevant parameters.
 - Heat capacity measurement a potential issue.
- Testing in FY12
 - Mechanical property evaluation of next Marlow TEMats.
 - TED thermal measurement estimations underway.
 - Mechanical characterization of other material constituents in TEDs. Shear testing of interconnects.

