Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications

Clay W. Maranville Ford Motor Company May 17, 2013

Project ID # ACE047

Disclaimer

2013 DOE Vehicle Technologies Annual Merit Review

This report was prepared as an account of work sponsored by the California Energy Commission and pursuant to an agreement with the United States Department of Energy (DOE). Neither the DOE, nor the California Energy Commission, nor any of their employees, contractors, or subcontractors, makes any warranty, express or implied, or assumes any legal liability or responsibility any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the DOE, or the California Energy Commission. The views and opinions of authors expressed herein do not necessarily state or reflect those of the DOE or the California Energy Commission, or any of their employees, or any agency thereof, or the State of California. This report has not been approved or disapproved by the California Energy Commission, nor has the California Energy Commission passed upon the accuracy or adequacy of the California Energy Commission passed upon the accuracy or adequacy of the information in this report.

Overview

2013 DOE Vehicle Technologies Annual Merit Review

Timeline

- Start: Oct. 2009
- End: Aug. 2013
- Percent complete 88%

Budget

- Total project funding: \$8.48M
 - DOE share: \$4.24M⁺⁺ ++ Includes direct funding to NREL
 - Contractor share: \$4.24M
- DOE funding received in FY12: – \$421,832 (Oct-11 to Sep-12)
- DOE funding projection for FY13:
 \$488,482 (Oct-12 to Sep-13)
- DOE funding to-date: \$2.89M**

3

Barriers

- Cost
- Scale-up to a practical thermoelectric device

Barriers[#]

- Thermoelectric device / system packaging
- Component / system durability

Targets

- By 2015, reduce by > 30% the fuel use to maintain occupant comfort with TE HVAC systems.
- Develop TE HVAC modules to augment MAC system
- Integrate TE HVAC into vehicle. Verify performance and efficiency benefits.
- Validate efficiency improvements with next-gen TE.

Partners

- Interactions/ collaborations:
 - Visteon, Gentherm, NREL, Ohio State University
- Project lead: Ford Motor Company

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Barriers & targets listed are from the VT multi-year program plan: http://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/vt_mypp_2011-2015.pdf

Relevance / Objectives

2013 DOE Vehicle Technologies Annual Merit Review

Project Goal:

Identify and demonstrate technical and commercial approaches necessary to accelerate deployment of zonal TE HVAC systems in light-duty vehicles

Program Objectives:

- Develop a TE HVAC system to optimize occupant comfort and reduce fuel consumption
- Reduce energy required from AC compressor by 1/3
- TE devices achieve $\text{COP}_{\text{cooling}} > 1.3$ and $\text{COP}_{\text{heating}} > 2.3$
- Demonstrate the technical feasibility of a TE HVAC system for lightduty vehicles
- Develop a commercialization pathway for a TE HVAC system
- Integrate, test, and deliver a 5-passenger TE HVAC demonstration vehicle

Technical Approach: Overall Program

2013 DOE Vehicle Technologies Annual Merit Review

- Develop test protocols and metrics that reflect real-world HVAC system usage
- Use a combination of CAE, thermal comfort models, and subject testing to determine optimal heating and cooling node locations
- Develop advanced thermoelectric materials and device designs that enable high-efficiency systems
- Design, integrate, and validate performance of the concept architecture and device hardware in a demonstration vehicle

Relevance / Accomplishments

2013 DOE Vehicle Technologies Annual Merit Review

FY2012 (Oct '11 to Sep '12) Objectives / Accomplishments:

- Initiated TE component fabrication and bench testing
- Completed evaluation of advanced TE heating/cooling materials
- Completed advanced TE materials feasibility assessment
- Fabrication of all major prototype components underway
- Initiated system and component cost analysis
- Initiated ancillary loads trade-study
- Continued thermal comfort modeling toolset development
- Finalized Bill-of-Material components for prototype vehicle integration

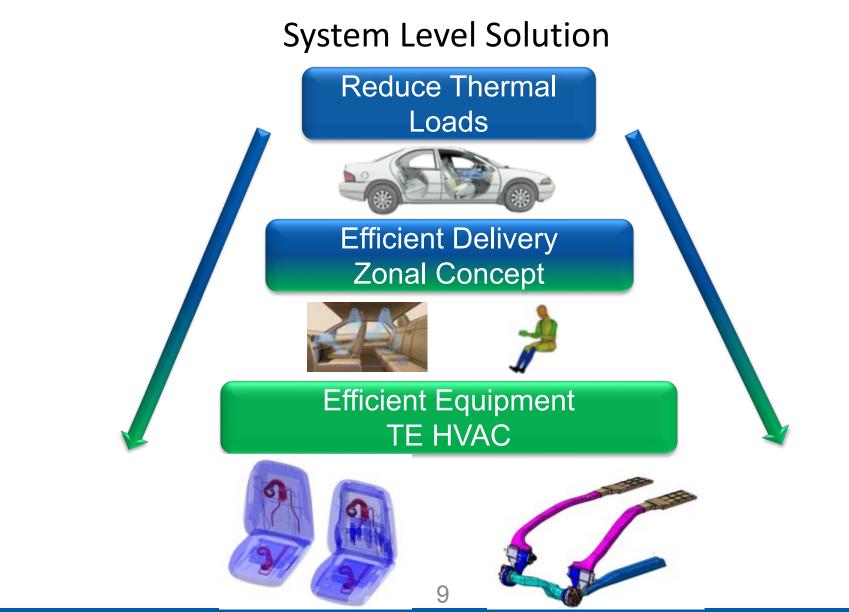
FY2013 (Oct'12 to Sep '13) Objectives:

- Completed TE component fabrication and bench testing
- Fabrication of all major prototype components completed
- Completed system and component cost analysis
- Installed TE HVAC system components, DAQ, and system controls into demonstration vehicle
- Complete ancillary loads study (March) and comfort model development (Aug)
- Develop system operation calibration strategy for vehicle tests (May)
- Complete TE HVAC commercialization assessment (May)
- Develop advanced TE HVAC commercial & technical roadmap (May)
- Conduct objective and subjective vehicle-level tests of TE HVAC system (June Aug)
- Conduct thermal comfort model / zonal system modeling assessment correlation (Aug)
- Demonstrate completed demonstration vehicle to DOE & CEC (Sep Oct)

Critical-Path Milestones: FY12, FY13

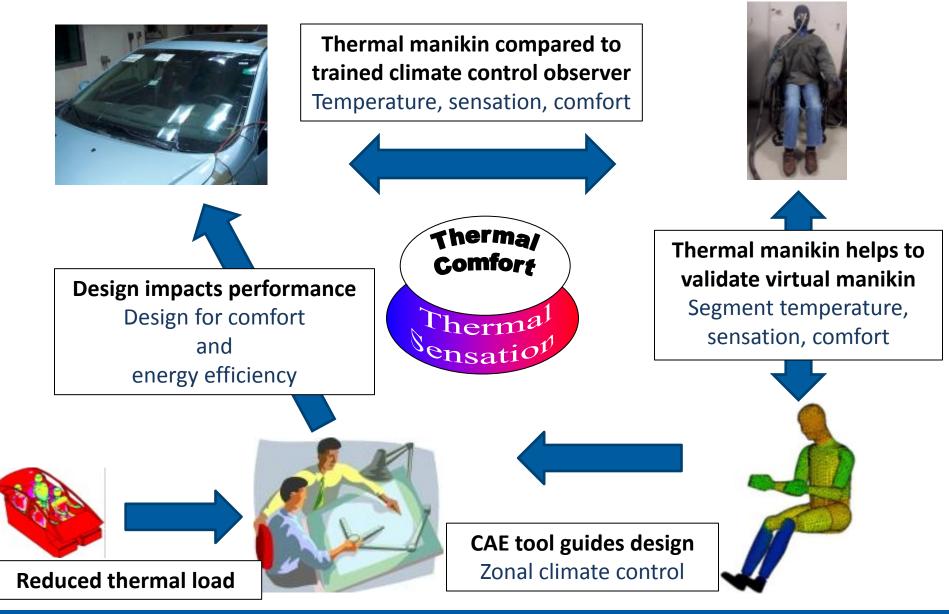
2013 DOE Vehicle Technologies Annual Merit Review

Month/Year	Milestone	Status	
Nov- 11	Thermal comfort modeling toolset functionality assessed for spot-comfort	Complete	
Sep-11	TE HVAC assembly specification development completed	Complete	
Dec-11	Empirical buck-modeling validation studies completed	Complete	
Dec-11	CAE and comfort models completed on final system architecture	Complete	
Mar-12	Proof-of-principle TE unit, bench study, and model comparisons completed	Complete	
Jun-12	Detailed CAD and packaging studies completed on TE HVAC	Complete	
Sep-12	Updated results from advanced TE materials research	Complete	
Sep-12	Design complete for vehicle-intent Electrical Power/Control, Air Handling, Liquid, and Central HVAC	Complete	
Dec-12	Bench testing completed on vehicle-intent TE device hardware	Complete	
Nov-12	System cost analysis completed	Complete	
Jan-13	Integrated TE device system bench validation testing completed	Complete	
Jaii-15	All component fabrication completed		
Mar-13	Final integration of vehicle with TE HVAC system completed	Delay to Apr-13	
Mar-13	Ancillary load analysis study completed	On-track	
May-13	Commercialization study completed	On-track	
May-13	Advanced TE materials and devices R&D completed	On-track	
	TE HVAC climate system performance and energy consumption testing completed	On-track	
Aug-13	TE HVAC objective thermal comfort testing completed		
Γ	TE HVAC subjective thermal comfort testing completed		
Aug-13	Final FE model validated against test results	On-track	
Aug-13	Comfort model validated against baseline and modified vehicle test results	On-track	
Sep-13	Vehicle demonstrated to DOE	On-track	


Go / No-Go Decision Points

2013 DOE Vehicle Technologies Annual Merit Review

Month/ Year	End of Phase Go / No-Go Decision	Status
	Phase 3	
Nov – 12	Vehicle-intent TE based subsystems meet bench-level performance and durability tests	Met
Nov – 12	Cost analyses shows a potential business case for a TE HVAC system in the specified timeframe	Met
	Phase 4	
Aug – 12	TE HVAC system meets comfort performance criteria specified in program objectives	
Aug – 12	TE HVAC system improves fuel economy compared with baseline vehicle	
Aug – 12	Cost study and commercialization analysis show TE HVAC commercial pathway for 2012-2015	
Aug – 12	Measured COP meets program objectives	

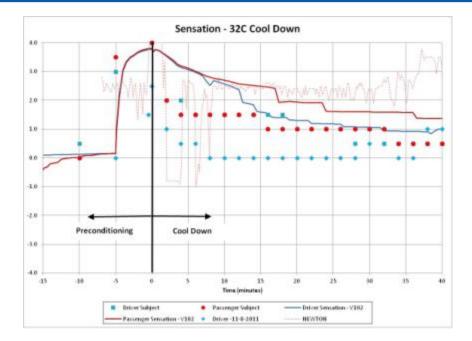


System Level Approach Required to Minimize Energy Use

Technical Accomplishment:

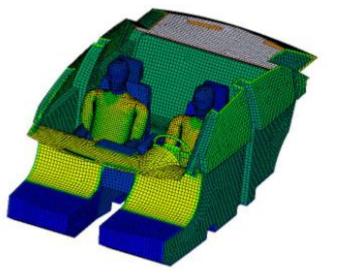
Integrated Modeling Approach Validated by Early Testing

National Renewable Energy Laboratory


Technical Accomplishment: Vehicle System Trade Studies to Optimize Design

Comfort Model Validation

• Validate zonal system with CAE, manikin and subject data



Ancillary Load Reduction Impact

Determining the comfort/energy/cost impacts of:

- Glazing IR reflective or absorptive
- IP low mass, IR reflective
- Body insulation
- Parked car ventilation
- Heated seats and other surfaces

Halla Visteon Climate Control

The approach to develop a zonal climate system has been broken into 4 phases:

Phase 1

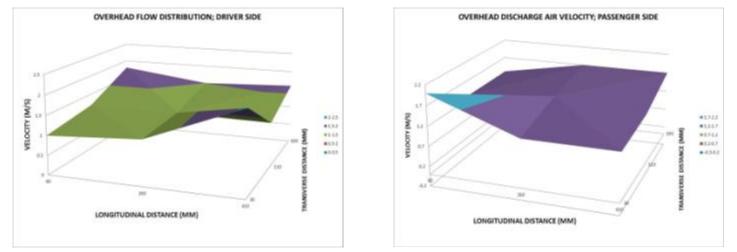
- ✓ Developed test conditions, measures of success and test methodology
- ✓ Benchmarked testing of conventional HVAC configurations.
- ✓ Evaluated perceived comfort for multple configurations of a zonal climate system

Phase 2

- ✓ Utilize CAE/CFD tools , including comfort models, for rapid evaluation of potential system architectures and confirmation of selected architecture before building & testing
- ✓ Conduct subjective tesing for perceived comfort in vehicle buck to confirm CAE/CFD
- ✓ Develop design requirements for TED and base system

Phase 3

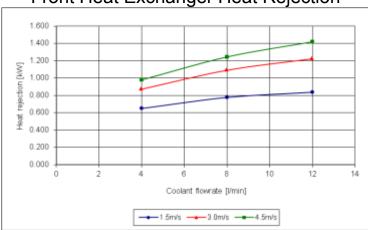
- ✓ Design components and subsytems to meet requirements from Phase 2 (CAE/CFD)
- ✓ Fabricate components and subsystems
- ✓ Validate component and subsystem performance bench testing


Phase 4

• Integrate zonal climate system components into vehicle & validate system performance

Technical Accomplishments - Results

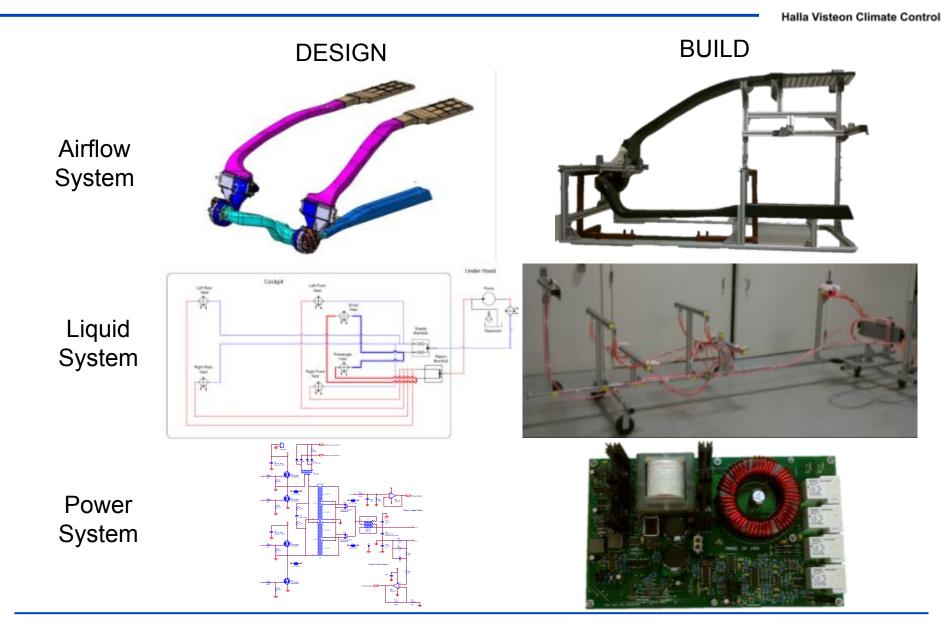
Halla Visteon Climate Control



Airflow System Results

Liquid System Results

Measured Flow Rates


	Measured
Flow rate overall	2.4GPM
Flow rate to overhead system	1.2GPM

Front Heat Exchanger Heat Rejection

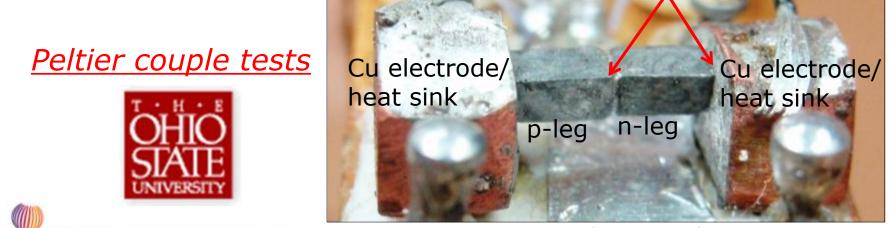
Technical Accomplishments – Design & Build

TE DEVICE DEVELOPMENT APPROACH

Thermoelectric Device Development

- Refine and optimize the Phase 2 device design for improved performance, durability, mass reduction and condensate management.
- Perform a detailed cost study of the device and identify target cost reduction actions to improve economical viability.
- Modify and improve manufacturing methods for improved throughput and quality.

Advanced Thermoelectric Material Development

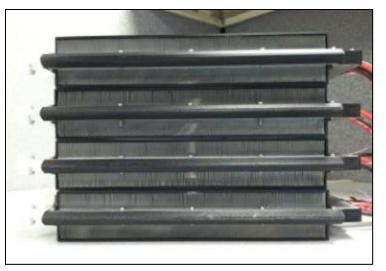

 Investigate the physical properties of porous materials and evaluate the performance of a single couple to validate the device level ZT. Coordinate with ZT::Plus to confirm performance measurements.

GENTHERM INSPIRING EFFICIENCY

ADV. MATERIAL RESEARCH-OSU

INSPIRING EFFICIENCY

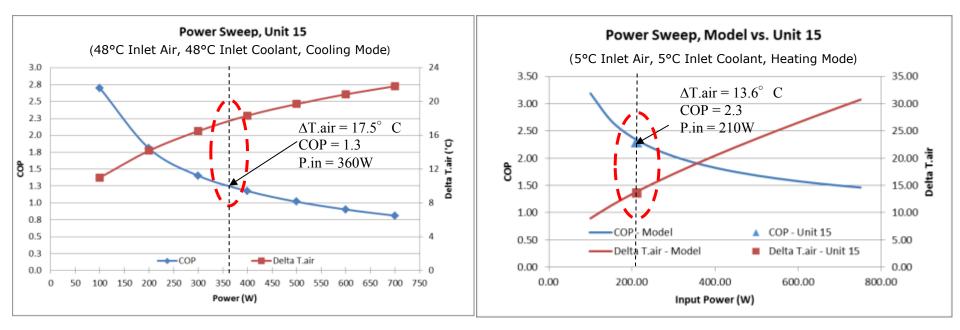

- Individual TE property (κ ,S, σ) testing of porous material samples shows an improvement in the ZT for both P-type & N-type samples. $_{zT} = S^2 \sigma /_{\kappa} T$
- ZT_{device} Tests on the OSU material do not confirm the 3 parameter ZT values. $ZT_c^2 = 2\Delta T_{max}$
 - Attempts with different contact technologies to verify the performance of the new material were conducted unsuccessfully.
 Thermocouples



DESIGN AND BUILD OF DEVICE

Phase 3 Improvements:

- Air fin mass reduced 27% resulting in a equal reduction in thermal response time.
- Several durability improvements resulting in a 5X increase in the total number of thermal cycles to failure.
- Assembly processes improved build time and repeatability.



Phase 3 Devices (4 Units)

TEST AND MODELING CORRELATION

- Thermoelectric device Program COP Targets:
 - Cooling Mode: COP of 1.3 with a Δ T.air of 17.5°C at 360W
 - Heating Mode: COP of 2.3 with a Δ T.air of 13.6°C at 211W

Model matches ΔT within 1°C & COP within 0.14

GENTHERM INSPIRING EFFICIENCY

Technical Approach: TE HVAC System Cost Study

2013 DOE Vehicle Technologies Annual Merit Review

<u>Methodology</u>

- Baseline assumptions and detailed cost analysis
 - Assume HEV to enable all-electric TE systems
- Zonal HVAC Feature Set:
 - 20k, 100k unit volumes cost basis
 - Hi-Series, Low-Series
- Zonal subsystem cost analysis:
 - Variable Cost, ED&T, Tooling, Mfg
 - Central HVAC
 - TE devices and seat climate
 - Overhead aux system
 - Balance of zonal TE system
 - Other modified systems

Technical Accomplishment: Cost Study for Zonal System

2013 DOE Vehicle Technologies Annual Merit Review

System Bill-of-Materials developed to study cost / weight / mfg. complexity


Luxury HEV

- Rows 1 & 2 advanced CCS
- Front row TE system
- Heated surfaces
- Zonal HVAC
- Zonal HVAC controls

Mainstream HEV

- Row 1 advanced CCS
- Front row TE system
- Zonal HVAC
- Zonal HVAC controls

Collaborations and Project Coordination

2013 DOE Vehicle Technologies Annual Merit Review

- Ford Motor Company:
 - Prime Contractor
 - Vehicle OEM
 - Systems Integrator
- Halla Visteon Climate Control:
 - Climate System Tier-1 Hardware and Controls
 - Power Electronics for TE systems
 - Zonal HVAC Integrator
- NREL:
 - Occupant Comfort Modeling / Testing
 - Ancillary Loads analysis
- Gentherm:
 - Advanced Thermoelectric Device and Module Development
 - Climate-Controlled Seat Module and Integration
 - Production Thermoelectric Materials Scale-Up and Manufacturing
- Ohio State University:
 - Advanced Thermoelectric Materials Research (Task completed September 2012)

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Broad industry, government, academia collaboration with expertise in all aspect of the project

Remaining Critical-Path Activities for FY13 and FY14

2013 DOE Vehicle Technologies Annual Merit Review

<u>FY13 (4Q12 – 3Q13)</u>

- Complete installation of TE HVAC system and analysis equipment into test vehicle
- Wind tunnel and field testing performance of TE HVAC system
- Assess measured occupant thermal comfort and HVAC system energy consumption vs modeling prediction
- Commercialization assessment of TE HVAC system
- Vehicle demonstration for DOE & CEC

FY14 (4Q13)

Prepare final report

Summary

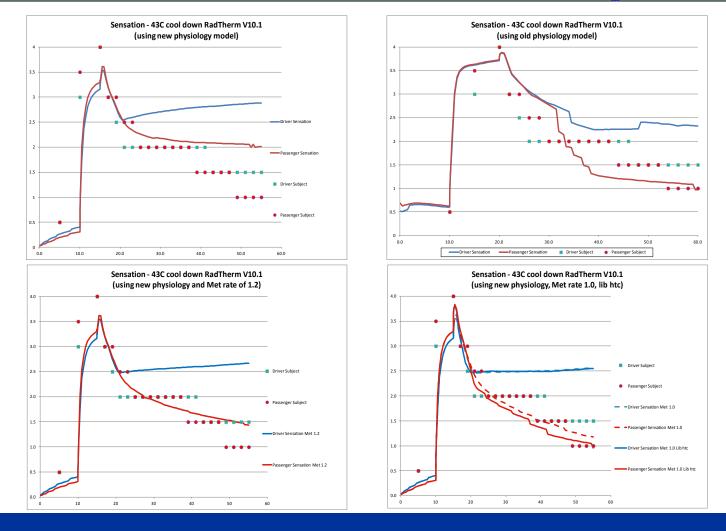
2013 DOE Vehicle Technologies Annual Merit Review

- Relevance:
 - Climate control systems are a large auxiliary load on the powertrain and energy optimization can result in overall vehicle fuel economy improvement
- Approach:
 - Project focus is on developing methods to optimize climate system efficiency while maintaining occupant comfort at current levels using new technology, architecture, and controls approaches
- Technical Accomplishments:
 - On target to meet Phase 4 milestones and end-of-project deliverables
 - System architecture design study completed, advanced TE materials research results encouraging, TED liquid-to-air device results on-track, thermal comfort modeling predictions validated by test results
- Collaborations:
 - Cross-functional team working well together. Good mix of skills and resources to address the technical tasks in this project.
- Future Directions:
 - Continue to progress towards a vehicle demonstration of the technology

Acknowledgements

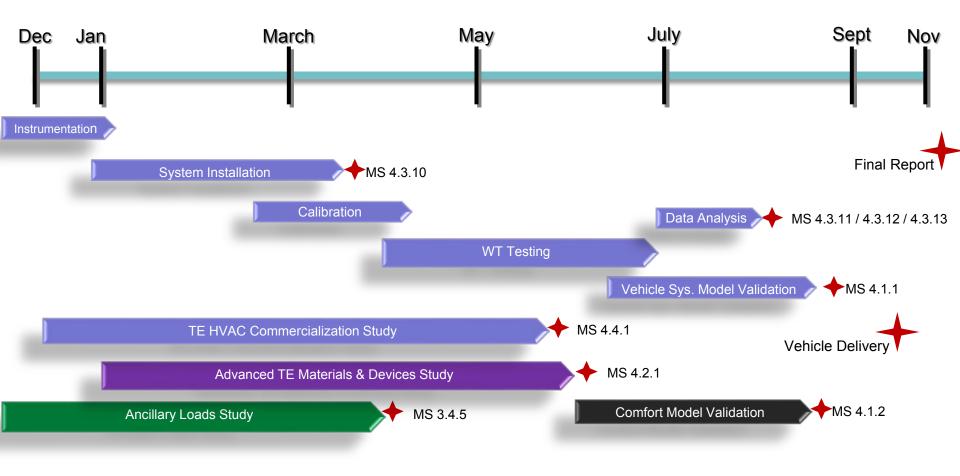
2013 DOE Vehicle Technologies Annual Merit Review

- We acknowledge the US Department of Energy and the California Energy Commission for their funding support of this innovative program
- A special thank you to John Fairbanks (DOE-EERE), Rhetta DeMesa (CEC), and Carl Maronde (NETL) for their leadership
- Thanks to the teams at Ford, Visteon, NREL, Gentherm, and Ohio State University for their work on the program


2013 DOE Vehicle Technologies Annual Merit Review

Technical Back-up Slides

Comfort Model Correlation Study Summary


2013 DOE Vehicle Technologies Annual Merit Review

Detailed Phase 4 Timeline

2013 DOE Vehicle Technologies Annual Merit Review

