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A “macro-electronics’ approach to
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Bismuth Telluride (Bi,Te;) is the most common commercially used
TEP material, and has a ZT~1. However, it is speculated that a ZT = 3
is required before TEP materials can become competitive with current
sources of electricity. Although there have been reports of ZT values
around 2, these values have not been verified.

Manufacturing and Commercialization

Importantly, their use of exotic nanostructured crystalline materials
makes them both expensive and difficult to reproduce on a large
scale. Therefore, it is useful to explore more economical sources of
thermoelectric power.
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Figure 2: SEM images ofa) 25b) 50 ¢) 75 d) 100 wt% SWNT/PVDF films. All four im show film surface

(bottom/right of 1mage) and a cross section of the film (top/left of image
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Figure 3: Experimental setup for measuring thin film (S) resistivity and TEP. Resistivity 1s measured by a 4-probe

method using electrodes V+, V-, I+, I-. TEP 1s measured by heating copper block Cu, via heater H to create AT, and

measuring AV across V+, V-. AT 1s measured by Si diode thermometers Ty and T.. The whole assembly 1s mnserted
into a vacuum chamber via transfer rod R where T can be controlled from 20K to 290K.
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Figure 4: Film resistivity vs Absolute T for varying SWNT wt%bs.
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Figure 5: Film resistivity vs SWNT wt% for T = 290K.
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Seeback Coeff. vs. Loading
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Seeback Coeff. vs. Loading \

SWNT/PVDF Film Seebeck Coefficient vs NT
Concentration
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Figure 7: Film TEP vs SWNT wt% at 290K.
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Figure 8: Power factor vs SWNT wt% at 290K.
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SWNT vs. MWNTs
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Figure 9: TEP vs Absolute T for MWNT and SWNT films.
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Figure 10: TEP vs Absolute T for raw and clean SWNT films.
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Module Design
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Cooling/heating B Power generation
(Peltier effect) (Seebeck effect)
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Fig. 1. TE heat engines. (A) When current is run across a TE junction, it heats or cools through the Peltier
effect, depending on the direction of the current flow. (B) When heat flows across the junction, electrical
current is generated through the Seebeck effect. (C) Practical TE generators connect large numbers of
junctions in series to increase operating voltage and spread heat flow.
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Traditional

Electron flow

e

Current and heat flow Current flows vertically
in the same general and heat in a general
vertical direction horizontal direction
Long current path Very short current path
through shunts through shunts
Tall, narrow TE elements Short, wide TE elements

Fig. 3. Alternative TE junction geometries. (A) A traditional junction. Current and heat flow in the same
general direction, and there is a long current path through shunts and tall narrow TE elements. (B) A stack
junction. The current flow is perpendicular to the heat flow, the current path is minimized through shunts,
and the TE elements are short and wide.
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Nanotube Modules
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R(Q)/R(320K)

Module Design
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non-metallic behavior over
the entire temperature
range (dR/dT < 0).

Activation energy from
Arrhenius plot:

B-doped ~ 12 meV
N-doped ~ 2 meV



Module Design
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Nanotube Modules

: pdoped NT film
: ndoped NT film
: insulation layer
: n/p junction
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igure 11: SEM image of multilayer CNT/polymer stack with 3 layers. The temperature gradient (Ty,-T.q) creates +V
in the p-type films (1), and -V in the n-type filn (2) as measured from left to right. The alternating connection between
films (4) adds the potentials in series. The rest of the films are kept electrically isolated by insulation (3).




Nanotube Modules We,
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Figure 12: TEP vs T for layered films
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Demonstration
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We have demonstrated: - & ;,"' i

1) Composites of Carbon Nanotubes within polymers can a{ﬁf@g 34
: C vyttt
thermoelectric response of Carbon Nanotubes mats which is advant’édééus

for products.

2) A novel and simple module design that allows for these very thin materials
to be integrated into a basic device. These devices can be made in large
areas and are about as thick as a fabric. The thermoelectric fabrics can be
applied in a wide range of applications not currently accessible to BiTe.
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