
Thermoelectric Activities of European Community within Framework Programe 7 and additional activities in Germany

H. Böttner

Fraunhofer Institute for Physical Measurement Techniques IPM Dept. Thermoelectrics Systems Freiburg, Germany

Content

- Thermoelectric within 7th Framework Programme of European Community
- DFG (German Reserach Foundation) priority programm "Nanothermoelectric"
- Public funded applied research in Germany
- Position of Fraunhofer IPM

Content

- Thermoelectric within 7th Framework Programme of European Community
- DFG (German Reserach Foundation) priority programm "Nanothermoelectric"
- Public funded applied research in Germany
- Position of Fraunhofer IPM

EC Framework Programme 7 (FP7) NMP

Nanosciences, nanotechnologies, materials & new production technologies

NMP.2010.1.2-3

2011-2014

Thermoelectric energy (TE) converters based on nanotechnology aspects of the manufactured nanoparticles as well as the composites

Expected impact: through improved TE materials ZT ≥ 3 wanted

NANOHIGHTECH	11/2014
	11/2017

THERMOMAG	10/2014

■ NEAT	03/201	4
	03/201	

■ NECTEC 05/2014

http://cordis.europa.eu/fp7/projects_en.html

EC Framework Programme 7 (FP7) NMP

Statistics:

money, Volume: 21,7 Mio Euros countries Funding: 14,7 Mio Euros

Countries:

Germany 10 France UK Sweden Spain Italy Greece

Lichtenstein, Austria, Switzerland, Poland,

Cyprus, Russia

Statistics: institutions

Universities	14
Other R&D (FhG)	9(4)
Companies	20
SME	10
large	10
(automotive	6)

EC Framework Programme 7 (FP7) NMP

Main topics

- NANOHIGHTECH 11/2014 Bi₂Te₃/Si/SiGe/B₄C/B₉C in low cost industrial processes superlattices for automotive application (???)
- THERMOMAG 10/2014 nanostructured Mg₂Si solid solution/bulk materials, no ZT target high temp. waste energy harvesting

EC Framework Programme 7 (FP7) NMP

Main topics

NEAT

03/2014

 Mg_2Si nanoparticles in n- $Mg_2(SiSn)$ alloy matrix capable for ZT >3 (???) kW-range converters for industrial and automotive applications

NEXTEC

05/2014

nanoscale material will be selected as part of first workpackage, no ZT target, bulk nanoscale material and nanoscale thick film (>> 50µm), waste heat power generation and cooling

Content

- Thermoelectric within 7th Framework Programme of European Community
- DFG (German Reserach Foundation)
 Piority Program "Nanothermoelectric"
- Public funded applied research in Germany
- Position of Fraunhofer IPM

DFG-Schwerpunktprogramm SPP 1386

Nanostrukturierte Thermoelektrika:

Theorie, Modellsysteme und kontrollierte Synthese.

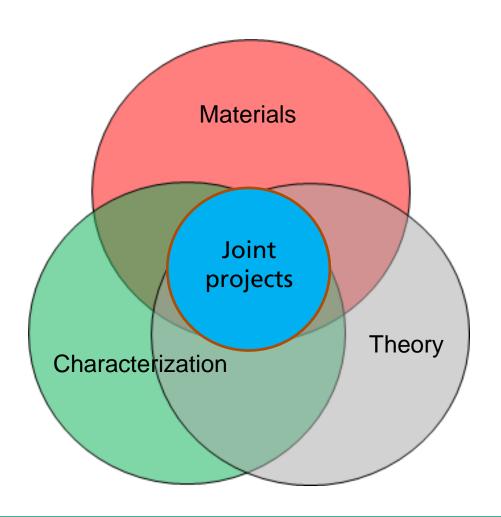
Nanostructured thermoelectrics: theory, modelsystems and controlled synthesis

Coordinator: Kornelius Nielsch University Hamburg

2009-2015

Structure: 3 competence areas

Materials


synthesis of nanoscale thermoelectric materials with defined geometry and composition

Characterization

structural and thermoelectric characterization

Theory

modeling and theory Grau, teure Freunde, ist alle Theorie All theory is gray, my friends J. W.v. Goethe, Faust I, 2038 f. / Mephistopheles

Education

TE Winter School	1419.02.2010	97	DTG	SP P4306
TE Spring School	28.03. – 01.04.2011	63	DTG	SPP-1306
TE PhD Summer School	09. – 12.08.2011	27		SP 24306
TEM Training	07/2010 and 02/2011	6		SPR-12006

Education

Thermal conductivity in
reduced dimensions:
3-Omega-method and beyond

27./28.05.2010

Transport theory

27./28.01.2011

Spark Plasma Sintering of nanoparticles

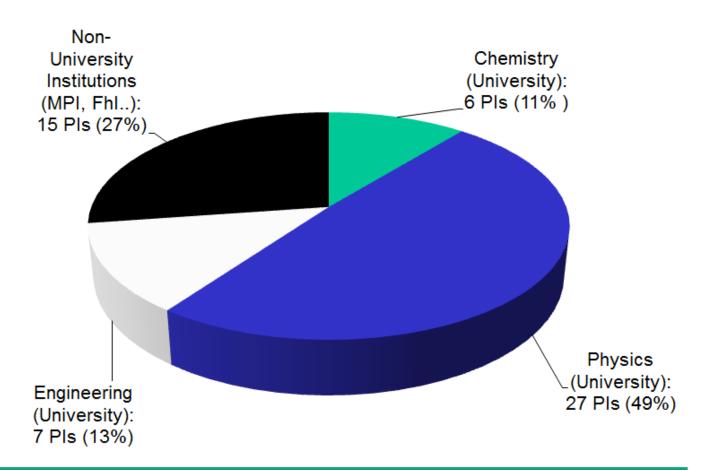
21./22.03.2011

Measurements of nanostructured 18.-20.03, 2012 thermoelectric materials


groups
1st funding period 2009-2012

103 publications until Jan 2012

proposals for the 2nd funding period 2012-2015



PΙ

distribution:

on

institutions

PI		1 st	2 nd
distribution:	Bi ₂ Te ₃ based Nanostructures	4	+2
	IV-VI related Materials (e.g. PbTe)	1	+2
on topics	Antimonides (e.g. Zn ₄ Sb _{3,} CoSb ₃)	3	
	Heusler, Silicides and Clathrates	4	
	Thermoelectric Oxides	3	+3
	Silicon based Nanostructures	4	
	Model Systems (z.B. GaAs)	2	
	Thermoelectric Measurements	5	+ 7
	Theory and Modeling	8	+6

Content

topics

- Thermoelectric within 7th Framework Programme of European Community
- DFG (German Reserach Foundation) priority programm "Nanothermoelectric"
- Public funded applied research in Germany
- Position of Fraunhofer IPM

New funding situation in Germany

Energy Technology Perspectives: Scenarios and Strategies to 2050

energietechnologien

"... Guidelines for a clean, reliable and affordable energy supply by the year 2050 are to be outlined in an energy concept. The aim of the energy concept is to provide a road map towards the era of renewable energies. In future, Germany aims to rank amongst the world's most energy-efficient and environmentally friendly national economies, offering competitive energy prices and a high level of prosperity. ..."

Joint press release 2010-8-30

R. Brüderle, Federal Minister of Economics and Technology

N. Röttgen, Federal Minister for the Environment, Nature Conservation and Nuclear Safety

Scenarios and Strategies towards 2050: Energy efficiency in Industry

<u>Technologies for energy harvesting:</u>

- Thermoelectricity
- Organic Rankine Cycle (ORC)
- Kalina Cycle
- Heat exchanger
- Industrial heat pumps

Result:

public R&D is important

Recommendations for public R&D funding:

- Evaluation of usable waste heat source
- New thermoelectric materials
- Industrial production technologies for thermoelectric generators
- Improvement of heat exchanger
- New concepts for ORC
- New refrigeration substances for heat cycle

H. Bradke, Berlin,05/2009

2008-2015

	Funding (M€)	Project volume
DFG (German Research Society)	8.7	8.7
BMBF Scientific Fed. Min. of Education and Research	5.5	5.5
BMBF Applied Fed. Min. of Education and Research	25	40
BMWI Applied Fed. Min. of Economics and Technology	11	19
	======	======
total	50.2	73.2

Companies

Thermopower 1 2011-2015

special projects

Company	SMEs	Large companies
		/big groups
TE-	4	
manufacturer/distributor		
Electronic manufacture		5
Measurement		1
techniques		
Automotive companies		2
Automotive supplier	1	10
Chemical industry		3
Ceramic industry	2	2
Automotive engineering		1
Steel and (special)		2
smelter		

Materials

- Skutterudites 3 times
- Half-Heusler
- Mg-, Mn-Silicides
- Oxides
- Chalcogenides

PUBLIC WORKSHOP PROGRM THERMOPOWER

16.-17. 10. 2012 Dechema Building Frankfurt

DECHEMA Society for Chemical Engineering and Biotechnology

http://www.ptj.de/ThermoPower

3rd IAV-Conference on Thermoelectrics November 21 – 23, 2012 Ellington Hotel, Berlin

PRESENTATION POSSIBILITIES

Presentations, posters, exhibition, NFW Poster and Exhibits Slam

LECTURES LANGUAGES AND DURATION

German and English with simultaneous translation. Presentations should last 20 minutes, with a following 10-minute discussion.

IMPORTANT DATES

Submission of abstracts for presentations (max. 3000 characters) and posters (max. 1500 characters) under iav.com/conferences

Closing date for abstracts: June 18, 2012

CONTACT

Abstracts, Presentations, Posters IAV GmbH Carnotstraße 1 10587 Berlin Tel: +49 30-39978-9894

E-Mail: thermoelektrik@iav.de

REGISTRATION AND FURTHER INFORMATION

iav.com/conferences

BSST

Fraunhofer Gesellsch

HAEFFLER GROUP SIEMENS

Call for 2012

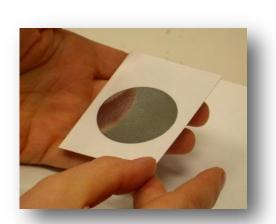
New program including thermelectric harvesting systems

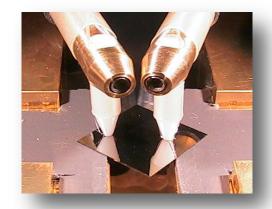
"Energieautarke Mobilität -Zuverlässige energieautarke Systeme für den mobilen Menschen"

Energy autarkic mobility – Reliable energy autarkic (self powered) systems for mobile people

Content

- Thermoelectric within 7th Framework Programme of European Community
- DFG (German Reserach Foundation) priority programm "Nanothermoelectric"
- Public funded applied research in Germany
- Position of Fraunhofer IPM





Materials – Modules – Metrology and Systems

10 scientists7 engineers9 technicians

15 students

Department
Thermoelectric Systems

New situation at Fraunhofer IPM

Dr. Kilian Bartholome

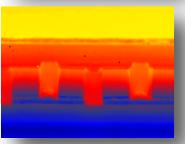
Head of dept. TES Group

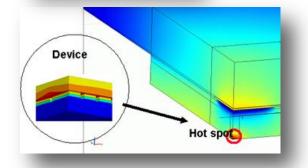
01.03.2012

Jan König

Group leader Energy converters Martin Jaegle

Group leader Metrology and self powered systems

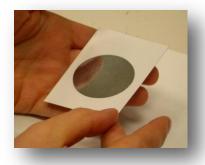


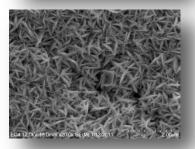


Topics

Converters for power generation and cooling

- High-Temperature and Nano materials
- Bulk and thin film system technology
- Development of production processes
- Simulation
- Metrology for materials, modules and integrated systems
- systems development

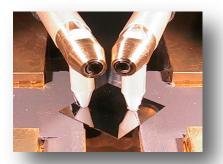




Materials

Novel materials and manufacturing methods

- Processing/modules for high temperature and bulk-nanoscale materials: "CoSb₃", Mn-, Mg-Silicides, HH
- new production methods: SPS, electrochem. deposition, printing
- Seebeck "standard"-materials, in collaboration with german (PTB) and international metrology institutes
- Online measurement of material properties (Fh-IPM ZT-meter)



Metrology

Customized measurement systems for all manufacturing steps

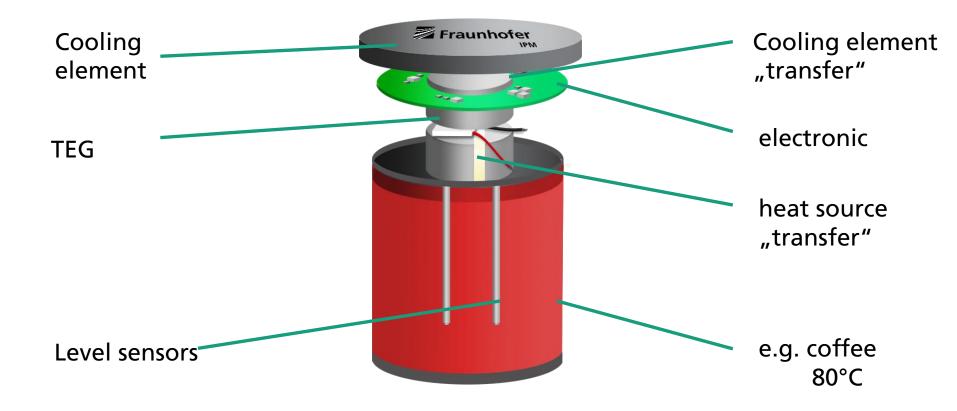
- High throughput screening systems
- Online measurement of ZT-value
- 3- Omega systems
- Module characterization
- On demand lab: costumer sample characterisation

Systems: Harvesters

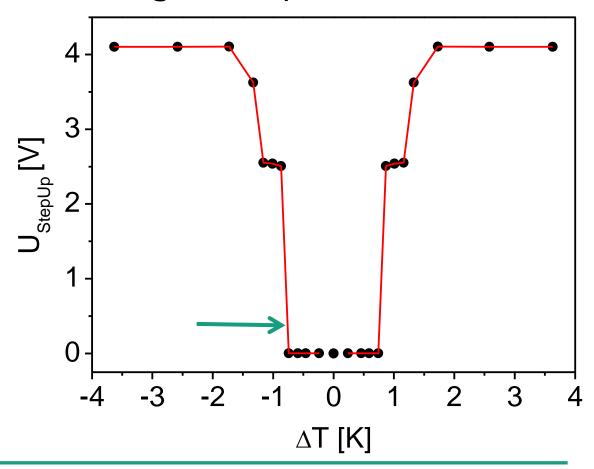
- Harvesting thermal energy from μW to kW
- Energy autarkic sensors transferring data via wireless communication

Systems: **Harvesters**

Communicating coffee pot



Communicating coffee pot



Communicating coffee pot

Step-up converter starts from

$$\rightarrow$$
 $\Delta T = \sim 0.8 \text{ K}$

Communicating coffee pot

Data:

Max. TEG-voltage:

Average TEG-voltage:

Max. power:

Average power:

400 mV

150 mV

85 mW

12 mW

Communicating coffee pot

Information to secretary:

x empty

Never again cold coffee

This demontrator can be ordered custom designed from Fraunhofer IPM

Thanks for your attention

and

happy coffee break

