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Overview 

 Start – Oct. 2012 
 Finish – Sep. 2014 
 Percent complete: 25%  

 Lithium manganese rich transition metal 
oxides (LMR-NMC) are viewed as the next 
generation high energy cathode material for 
lithium ion batteries. Mitigation of the 
voltage fade issue is critical for its successful 
commercialization.  

Timeline 

Budget 

Barriers 

 Part of Voltage Fade ($4M 
total project funding in 
FY2013) 

 100% DOE 

Partners and Collaborators 
 Voltage Fade Participants (Anthony Burrell, 

ANL) 
 Cell Fabrication Facility (Andrew Jansen, ANL)  
 Illinois Institute of Technology (Jai Prakash) 
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Objectives 

 The entropy change will be investigated to monitor the 
structural transitions of the LMR-NMC material during charge 
and discharge, leading to the better understanding of the root 
cause of voltage fade.  
 

 In addition, the kinetics of LMR-NMC, such as lithium ion 
diffusion and electronic conductivity, will be studied to 
identify their role in voltage fading. 
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Milestones 

 Formation effect on voltage fade of 
LMR-NMC (HE5050, Toda)  

 Entropy change investigation of 
LMR-NMC (HE5050) 

 Thermal investigation of LMR-NMC  
 

4 

Completed 
 
On target 
Initiated 
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 Why study formation effect? 
– A lot of scattered information from 

various researches conducted using 
varying test conditions.  

– Strong need to determine the effect of 
formation cut-off voltage, related to 
the depth of Li2MnO3 activation, on 
voltage fade using standard test 
protocol with a systematic approach. 
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 Four different formation cut-off 
voltages, 4.8V, 4.7V, 4.6V, and 4.5V, 
were investigated. Under each 
formation cut-off voltage, a lower or 
equal cut-off voltages was applied for 
cycling tests.  

 Increasing the formation voltage also 
increase the capacity obtained at lower 
reduction potentials. 
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Voltage Fade with Various Cycling Cut-off Voltages 

 With 4.7V formation voltage, no 
clear capacity fading difference 
was observed regardless of 
cycling cut-off voltage. 

 The lower the cycling cut-off 
voltage is, the less voltage fade. 
No voltage fade observed when 
4.3V was used as cycling voltage. 
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Voltage Fade with Various Formation Cut-off Voltages 

 Same reversible capacity with  same 
cycling cut-off voltage regardless of 
various formation cut-off voltages. 

 The formation cut-off voltages affect 
both voltage fade and electrode 
average voltage. The higher formation 
cut-off voltage will cause 

– lower voltage fade, and 
– lower starting average voltage. 
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Voltage Fade and Redox Potential Shift  

 After 4.5V formation, no capacity 
fading with 4.4V cycling cut-off 
voltage observed. 

 No capacity change related to redox 
peak at 3.8V.  

 Therefore, voltage fade can be 
attributed to the shift of lower redox 
potential at 3.2V.  
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Entropy Change and Open Circuit Voltage (OCV) 
Why entropy change (∆S) 
Entropy change is defined as the index of energy dispersal, or a measure of the 
molecular randomness or disorder of a system. 
Entropy change is directly related to cell potential as given by the function below: 
 ∆S = nF(dE/dT)p 

Entropy change measurement allows us to find out the root cause of voltage fade 
for LMR-NMC at macrostate level. 
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Open Circuit Voltage vs. State of Charge  
(OCV vs. SOC) 

 Charge: High over-potential at both 
low and high SOC.  

 Discharge: high over-potential at 
only low SOC. 

 Over-potential separation from 
charge to discharge at high SOC. 
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The Li half cell was charged/discharged at C/10 rate. 
OCV was taken after 3 hours rest. 
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OCV vs. Temperature 

 Temperature steps:  
– 0oC -> 10oC -> 20oC -> 30oC -> 40oC -> 30oC -> 20oC -> 10oC. 

 At low SOC, OCV is stable at all temperatures. 
 At high SOC, OCV isn’t stable at elevated temperatures.  
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Entropy Change at Various SOC 

 LMR-NMC becomes less 
ordered at delithiated state. 

 Overlapped entropy change, 
especially at lower SOC, 
indicates reversible chemical 
process during charge and 
discharge. 
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Isothermal Micro Calorimetry (IMC) Study on LMR-NMC 

 Heat flow during charge/discharge consists of joule heat and entropy heat. 
 The heat flow characteristics reflect the structure changes of the electrode 

material.  
 During charge, three heat flow regions are apparent at low, middle, and 

high SOC. More heat is released at both low and high SOC. 
 During discharge, two heat regions were observed at high and low SOC. 
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Future Plan 
 The entropy change of the LMR-NMC electrode after 

formation cycles was measured at various state of charge.  
We will continue to investigate the entropy change of the 
LMR-NMC during the voltage fade process. 

 The Isothermal micro calorimetry investigation of LMR-NMC 
will be continued. 

 Lithium ion diffusion at various state of charge (SOC) will be 
studied using electrochemical impedance spectroscopy.  

 The entropy change investigation, together with formation 
effect on LMR-NMC, suggested an order/disorder change of 
LMR-NMC during charge and discharge. The detailed phase 
transition mechanism is being studied with structural study 
under the Voltage Fade project. 
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 The formation effect on voltage fade of LMR-NMC was 
systematically investigated. The results clearly indicate that 
the voltage fade is affected by both formation and cycling 
cut-off voltages.  
– After same cut-off voltage formation (4.7V vs. Li/Li+), the lower the 

cycling cut-off voltage is, the less voltage fade. No voltage fade 
observed when 4.3V was used as cycling voltage. 

– With the same cycling cut-off voltage (4.5V vs. Li/Li+), the higher the 
formation cut-off voltage, the lower the voltage fade, however, at 
expense of lower average voltage.  

– We also noticed that the cell capacity was proportional to the cycling 
voltage, but less affected by the formation voltage. However, 
increasing the formation voltage increase the capacity obtained at 
lower reduction potentials. 
 

Summary 
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Summary 

 The entropy change after formation was measured during the 
charge and discharge processes: 
– The entropy change of LMR-NMC increases linearly at lower states of 

charge, but, relatively flat at higher states of charge.  
– The distinct deference in these two regions suggests a different 

configuration of the LMR-NMC at low and high states of charge. 
– At higher states of charge, the voltage is not stable at elevated 

temperature. 

 Heat flow of LMR-NMC was measured using isothermal micro 
calorimeter during charge and discharge. 
– Different heat flow feature during charge and discharge suggest an 

irreversible process. 
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