Thermally Conductive Organic Dielectrics for Power Electronics and Electric Motors

A. A. Wereszczak, T. G. Morrissey,
R. H. Wiles,* and H. Wang
Oak Ridge National Laboratory (ORNL)
* National Transportation Research Center

 National Transportation Research Center (NTRC/ORNL)

2013 Vehicle Technologies Annual Merit Review and Peer Evaluation Meeting Arlington, VA 14 May 2013

Project ID: pm037_wereszczak_2013_o

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start: October 2010
- Project end: September 2013
- Percent complete: 83%

Budget

- Total project funding
 - DOE 100%
- FY11: \$250k
- FY12: \$150k
- FY13: \$100k

* VTP Multi-Year Program Plan 2011-2015

Barriers*

- Barriers Addressed
 - Reliability and lifetime of power electronic devices (PEDs) and motor components degrade rapidly with temperature increase.
 - PEDs and motor components need improved thermal management to operate at higher temperatures.
 - New paradigms in cooling would enable achievement of higher power densities without compromise to device reliability.
- Targets:
 - DOE VTP* 2020 target: 105°C Coolant
 - DOE VTP* 2020 target: 4 kW/liter power density

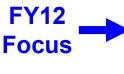
Partners

- OVT Advanced Power Electronics and Electric Motor (APEEM) Program – ORNL/NTRC
- SolEpoxy (Epoxy molding compound, EMC, manufacturer)
- Ube (powder manufacturer)

Objectives

- Develop low-cost, high-performance epoxy molding compounds (EMCs) for automotive (AEV, HEV) power electronics and electric motors.
- Reduce volume and improve thermal reliability of power electronics and electric motors via improved or new thermal management strategies.
- Develop EMCs that have:
 - Sufficient low cost for automotive applications
 - Sustained dielectric performance
 - High thermal conductivity (≥ 5 W/mK)
 - No magnetic susceptibility
 - Use non-toxic and inexpensive filler
 - Equivalent potting and injection molding characteristics to existing EMCs

Milestones


- FY12: Model, design, and fabricate filler-containing-EMC having 10x thermal conductivity increase over monolithic epoxy. *Achieved: 3.0 W/mK compared to 0.2 W/mK.*
- FY13: Fabricate a thermally conductive EMC structure with a Joule-heated, surrogate electronic device, measure its maximum temperature, and compare to the maximum temperature when a conventional EMC is used. 30 Sep 2013 – On track.

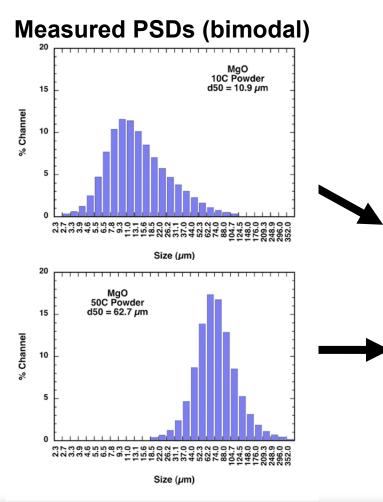
Technical Approach

- Optimize filler particle size distribution and volume fraction.
- Fabricate EMCs with organic matrices that allow transfer molding and potting.
- Demonstrate thermal conductivity (κ) \geq 5 W/mK.

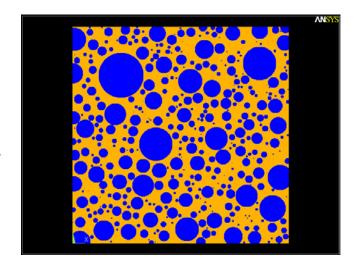
Candidate
Filler
Properties

Material	Electrical Resistivity at 25°C - ρE - (Ω•cm)	Thermal Conductivity at 25°C - ĸ - (W/m•K)	Heat Capacity - Cp - (J/kg•K)	Density -ρ- (g/cm ³)	Coefficient of Thermal Expansion - CTE - (x 10 ⁻⁶ /°C)	Knoop Hardness (GPa)	Estimated Cost (\$/kg)
Alumina (Al ₂ O ₃) or aluminum oxide	> 10 ¹⁴	30	900	3.9	8	14	5
Aluminum nitride (AlN)	> 10 ¹⁴	250	700	3.2	5	12	50-200
Beryllia (BeO) or beryllium oxide	> 10 ¹⁴	280	600	2.9	9	12	800-1000
Boron nitride hexagonal (h-BN) * Anisotropic	> 10 ¹⁴	275*	1600	1.9	1*	4	40-50
Magnesia (MgO) or magnesium oxide	> 10 ¹⁴	40	900	3.6	10	7	5
Mullite (2SiO ₂ •3Al ₂ O ₃)	> 10 ¹⁴	5	900	2.8	6	8	5
Silica (SiO ₂) or silicon dioxide crystalline quartz	> 10 ¹⁴	14	700	2.6	0.5	7	0.3
Silica (SiO ₂) or silicon dioxide fused silica or fused quartz	> 10 ¹⁶	1	700	2.2	0.5	5	1
Ероху	> 10 ¹⁴	0.05 - 0.5	1500	1.2	30-60	N/A	5

Technical Accomplishments (1 of 8)


Overview of Year's Accomplishments:

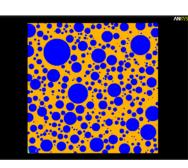
- Identified approximate filler particle size distribution (PSD) and volume fraction (Vol%)
- Developed software to predict thermal diffusivity as a function of PSD and Vol%
- Transient thermal model developed using PDS and Vol%
- Modeled effect of higher κ on components
- Thermal conductivity of 3 W/mK achieved with MgO-filled EMCs which is 2x higher than state-of-the-art EMCs
- Invention disclosure submitted on hybrid-filled EMCs

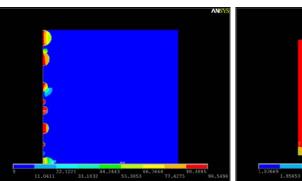


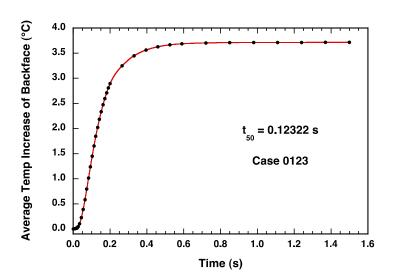
Technical Accomplishments (2 of 8)

Software Was Developed to Create 2D Images of PSDs That in Turn Enables Thermal Conductivity Modeling

- Particle size distribution (PSD)
- Volume fraction
- Percolation limit
- Effects on thermal conductivity



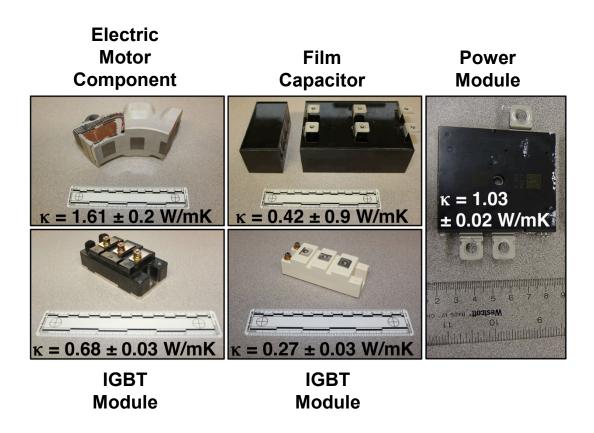



Technical Accomplishments (3 of 8)

Transient Thermal Modeling Enables Estimation of EMC κ

Temperature as a function of time

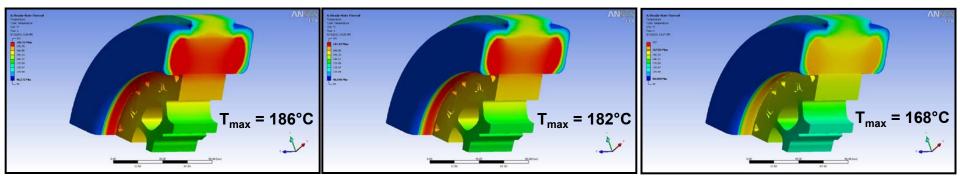
$$D = \frac{\kappa}{\rho \bullet Cp} = \frac{0.1388 \bullet T^2}{t_{50}}$$


D = diffusivity

- **κ** = thermal conductivity
- ρ = density
- Cp = heat capacity
- T = thickness
- t₅₀ = time to reach 50% max temp

Technical Accomplishments (4 of 8)

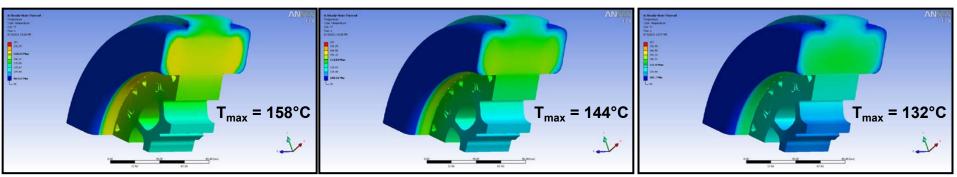
- Power electronic and electric motor component exteriors have low thermal conductivity
- Strive to increase their thermal conductivity and enable additional approaches to thermal management
- Improved cooling, performance, and reliability


Technical Accomplishments (5 of 8)

Motor Component FEA Example: Effect of EMC κ

κ = 0.5 W/mK κ =

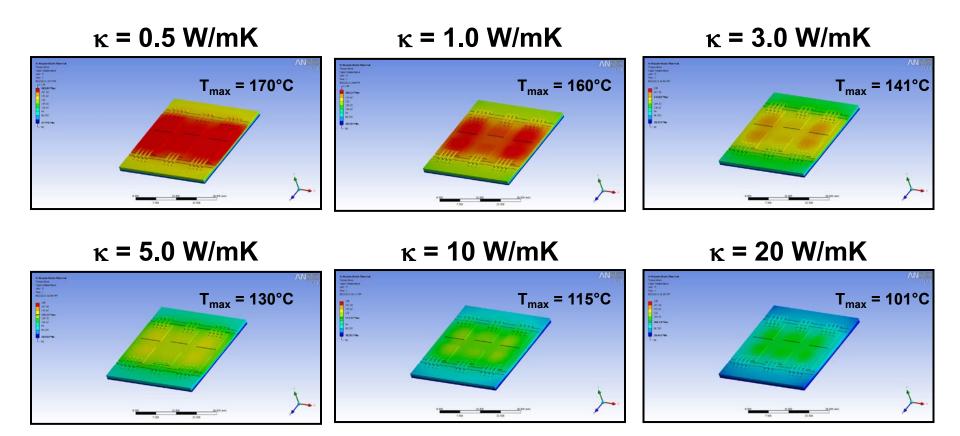
κ = 1.0 W/mK


κ = 3.0 W/mK

 κ = 5.0 W/mK

κ = 10 W/mK

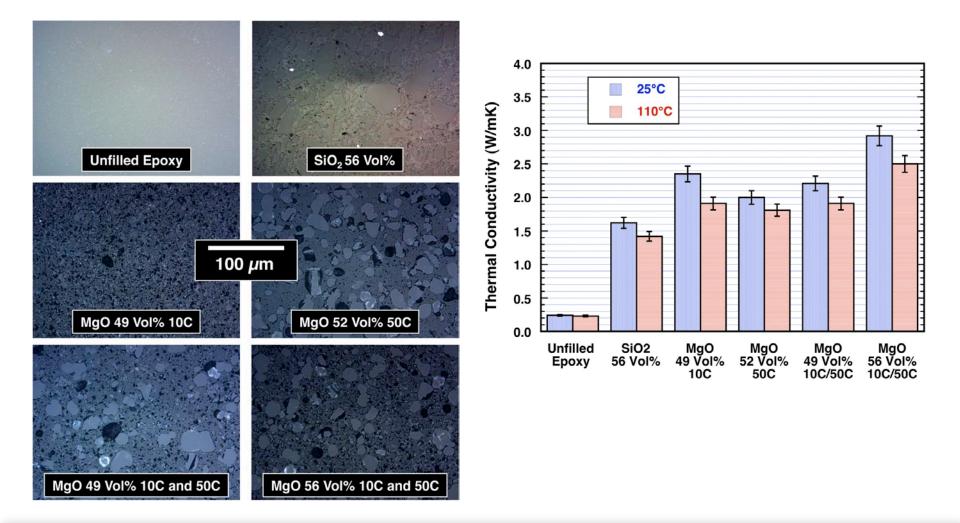
κ = 20 W/mK



10% temperature decrease with 3 W/mK for this example

Technical Accomplishments (6 of 8)

Power Module FEA Example: Effect of EMC κ



17% temperature decrease with 3 W/mK for this example

Technical Accomplishments (7 of 8)

Thermal Conductivity of 3 W/mK Achieved with MgO-EMCs

Technical Accomplishments (8 of 8)

Property	Unfilled Epoxy	SiO ₂ 56 Vol%	MgO 49 Vol% 10C	MgO 52 Vol% 50C	MgO 49 Vol% 10C-50C	MgO 56 Vol% 10C-50C
Filler	None	SiO ₂	MgO	MgO	MgO	MgO
Weight % Filler	0	74	74	76	74	79
Volume % Filler	0	56	49	52	49	56
Spiral Flow (cm)	250+	61	104	101	109	86
Gel Time (sec)	22	24	22	17	19	23
Density (g/cc)	$1.19 \pm 2\%$	$2.00\pm2\%$	$2.35 \pm 2\%$	$2.42 \pm 2\%$	$2.36\pm2\%$	$2.52 \pm 2\%$
Dielectric Strength of 900 µm thick film (kV/mm)	54	40	37	32	40	32
Surface Resistivity at 500 V (Ω)	4.8 x 10 ¹⁵	1.5 x 10 ¹⁷	4.9 x 10 ¹⁵	5.1 x 10 ¹⁵	5.0 x 10 ¹⁵	4.2 x 10 ¹⁵
Volume Resistivity at 500 V (Ω•cm)	7.2 x 10 ¹⁵	6.4 x 10 ¹⁶	4.9 x 10 ¹⁵	5.9 x 10 ¹⁵	6.0 x 10 ¹⁵	5.4 x 10 ¹⁵
Dielectric Constant at 10kHz	3.54	3.82	5.51	5.13	5.66	6.18
Dissipation Factor at 10kHz	0.0089	0.0060	0.0048	0.0030	0.0063	0.0065
Thermal Conductivity at 25°C (W/mK) ORNL hot disk method	0.24 ± 5%	1.62 ± 5%	2.35 ± 5%	2.00 ± 5%	2.21 ± 5%	2.92 ± 5%
Thermal Conductivity at 110°C (W/mK) SolEpoxy hot disk method	0.23	1.42	1.91	1.81	1.91	2.50
Estimated Softening Temperature from Dilatometry (°C)	132 ± 5%	170 ± 5%	145 ± 5%	147 ± 5%	147 ± 5%	146 ± 5%
Coefficient of Thermal Expansion (x 10 ⁻⁶ /°C)	64 ± 5%	32 ± 5%	30 ± 5%	30 ± 5%	32 ± 5%	30 ± 5%
Elastic Modulus (GPa)	3.0 ± 5%	18.4 ± 5%	18.7 ± 5%	19.7 ± 5%	18.1 ± 5%	24.1 ± 5%
Poisson's Ratio	0.32 ± 5%	$0.25 \pm 5\%$	$0.28 \pm 5\%$	0.25 ± 5%	$0.27\pm5\%$	$0.25 \pm 5\%$
Weight Gain After 800h in Water (mg) Nominal sample size: 50 mm dia. x 12.6 mm t or Area = 59 cm ²	90	27	57	59	58	60

MgO-EMCs:

- ✓ Good processibility
- ✓ High dielectric strength
- ✓ High electrical resistance
- ✓ Good thermal conductivity
- ✓ Equivalent structural properties to SOA SiO₂-EMCs

Collaborations

- SolEpoxy, Inc. (Olean, NY). An established, renowned EMC manufacturer
 - Supplier to power electronic and motor component manufacturers
 - Fabricated this project's MgO-EMCs in FY12
 - Fabricating this project's hybrid-filled EMC blends in FY13.
- Ube (Japan). An establish MgO supplier
- DOE EERE Office of Vehicle Technologies APEEM Program, J. Miller, ORNL/NTRC: motor components

Future Work

- Seeking EMC thermal conductivity to 5 W/mK via "hybrid" EMCs, which are a blend of MgO and a second filler with higher thermal conductivity
- Continue to collaborate with SolEpoxy and VTP APEEM motor R&D to adapt MgO-EMC compositions to coating of stator components
- Fabricate a thermally conductive EMC structure with a Joule-heated, surrogate electronic device, measure its maximum temperature, and compare to the maximum temperature when a conventional EMC is used

Summary

- <u>Relevance:</u> thermally-conductive EMCs will lower maximum operating temperature of automotive PEs and EMs and improve their reliability
- <u>Approach:</u> develop low-cost thermally-conductive MgO-EMCs
- <u>Collaborations:</u> a primary and established EMCs manufacturer and VTO APEEM power electronic and electric motor projects
- <u>Technical Accomplishments:</u>
 - κ = 3 W/mK achieved inexpensively, and MgO-EMCs are processable, electrically resistive, and magnetically insusceptible. 2x higher κ than state-of-the-art SiO2-EMCs
 - Identified a cost-performance compromise must be struck to get to 5 W/mK.
- Future work:
 - Demonstrate that a hybrid-filled EMC that blends (cheap) MgO with a (more expensive) high κ filler can produce κ = 5 W/mK.
 - Implement MgO-EMCs compositions in electric motor stator coatings for R&D in the VTO APEEM Program.

