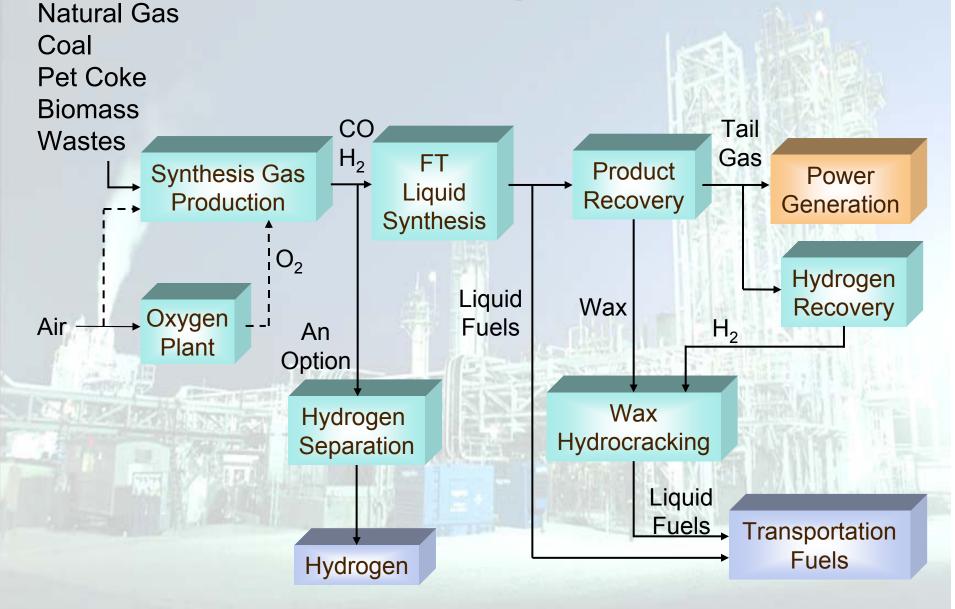
TESTING SYNTHETIC FUELS FOR USE IN U.S. ARMY GROUND VEHICLES

Presented to

Diesel Engine-Efficiency and Emissions Research (DEER) 2006 Conference

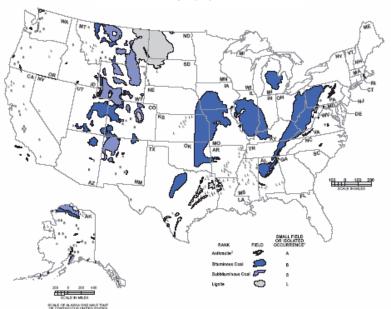
August 21, 2006

PANEL: NEW FEEDSTOCKS AND REPLACEMENT FUELS


Herb Dobbs U.S. Army RDECOM-TARDEC Team Leader, Alternative Fuels and Fuel Cell Technology 586 574 5157 dobbsh@tacom.army.mil Patsy A. Muzzell Eric R. Sattler Brian J. McKay U.S. Army REDCOM-TACOM

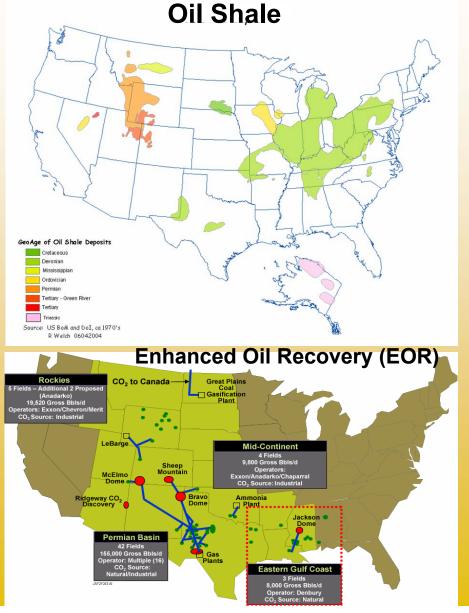
Leo L. Stavinoha, Stavinoha Enterprises 1

OSD Assured Fuels Initiative


Vision: To catalyze commercial industry to produce clean fuels for the military from secure domestic resources using environmentally sensitive processes as a bridge to the future.

Fischer-Tropsch Process

Evaluating All US Energy Resources


Coal

Sources: United States Geological Survey, Coalifields of the United States, 1960-1961; Texas Bureau of Economic Geology, Lignite Resources in Texas, 1980; Louisiana Geological Survey, Near Surface Lignite in Louisiana, 1981; Colorado Geological Survey, Coal Resources and Development Map, 1981; and Mississippi Bureau of Geology, 1983.

Domestic Resources

- 1.4 trillion barrels (shale)
- 900 billion barrels of FT (coal)
- 0.15 billion barrels (pet coke)
- 22.7 billion barrels oil reserves
- 32+ billion barrels of oil (EOR)
- 100 million pounds of pulp waste/year **Total 2.3+ trillion barrels equivalent**

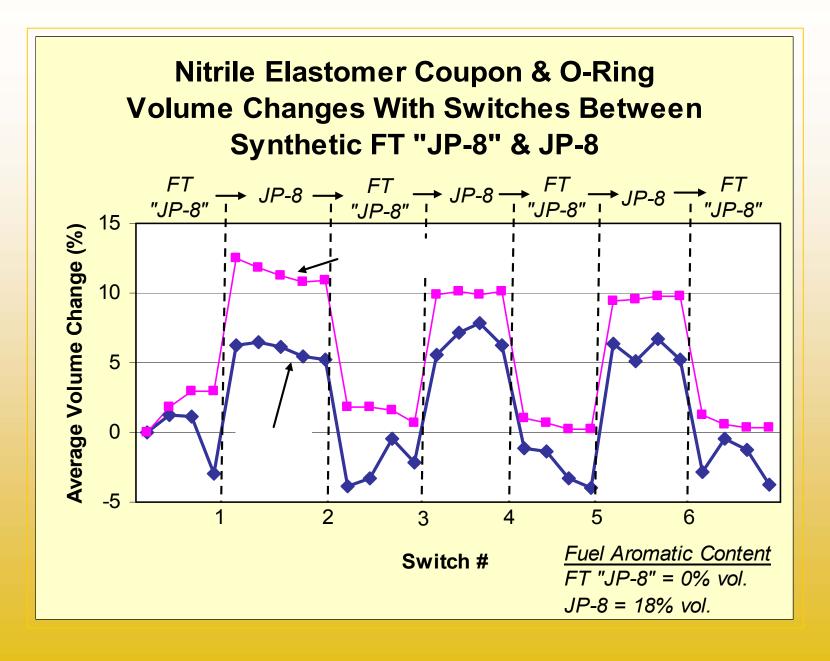
OSD Assured Fuels Initiative Goals

Total Energy Development (TED)

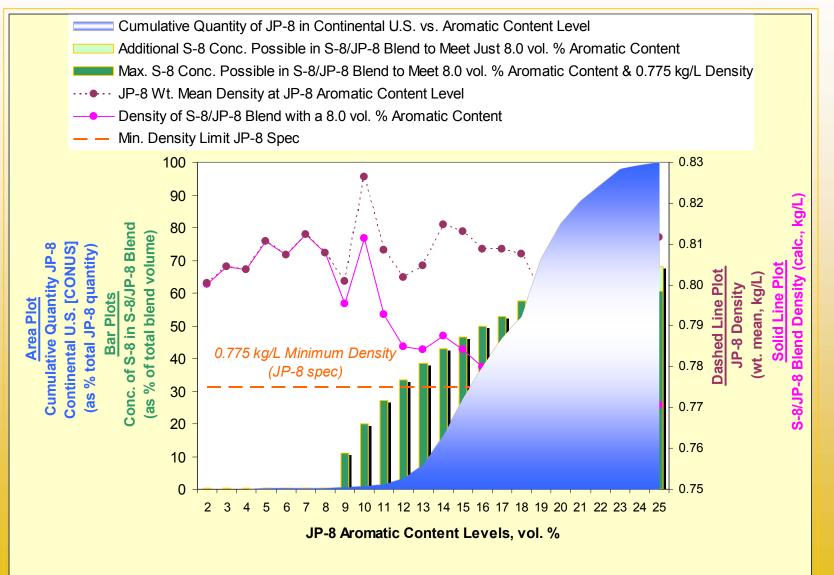
- Catalyze the industry to produce fuels for the military from domestic energy resources
- Develop a roadmap to provide fuel for the Joint Battlespace Use Fuel of the Future program and implementation

Joint Battlespace Use Fuel of the Future (J-BUFF)

- Develop fuel specifications that include non-petroleum components, for use in military equipment, aircraft, ships and ground vehicles
- Validate use of the fuels in all tactical vehicles, aircraft and ships
- Provide a transition plan for DoD wide deployment


Research Participants

- Air Force
 - Air Force Fuels Research Laboratory/NAFRC
 - University of Dayton Research Institute
- Army
 - TARDEC Fuels & Lubricants Laboratory
 - Southwest Research Institute
- Navy
 - NAVAIR Fuels and Lubricants Laboratory
 - Naval Fuels and Lubricants Integrated Product Team
- DOE
 - National Energy Technology Laboratory
- Syntroleum Corp.



Predicted Fuel Blend Properties

Lubricity of treated synthetic fuel

Test	Pump	Duration (hours)	Change ¹ (mm)	FT Fuel CI/LI (mg/L)
1	1	95.6	0.096	Untreated
	2	150.7	0.068	
2	3	500	0.007	12
	4	500	-0.006	(Min. ²)
3	5	500	0.005	22.5
	6	500	0.002	(Max. ²)
¹ Change in roller-to-roller dimension pre-& post- test.				
² Min. and Max. treat rates per QPL-25107.				

Data courtesy SwRI – TARDEC Fuels & Lubricants Research Facility

Testing in rotary injection pump test rig established improvement in neat FT fuel treated with lubricity improver additive, CI/LI, indicative of acceptable field performance. [SAE 2004-01-2961]

Next Army steps: Progressive engine, fuel system, equipment, vehicle and fleet tests thru 2009, leading to qualification for use in Army ground vehicles, aircraft and equipment. Air Force and Navy timetables are comparable.

- Document engine performance of blend fuels versus petroleum JP-8
- Continue research in the effects on elastomer seals of switchloading petroleum and synthetic fuels, and additives to promote seal swell in non-aromatic fuels.
- Continue research in lubricity of blended fuels and potential lubricity additives.
- Develop a knowledge-based qualification approach to minimize expense and time.