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Outline

• Overview
• TEG Modeling activity in Corning
• Conclusions
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Automotive industry needs to meet CO2/fuel economy 
regulations

Source:  “Passenger Vehicle Greenhouse Gas and Fuel Economy Standards,” ICCT, April 2010 update.
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Opportunity for
waste heat
recovery with
thermoelectrics
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Thermoelectrics can lower fuel consumption in cars
by converting waste heat to electricity

Thermoelectrics competes with
other waste heat recovery techniques
• Bottoming cycles (Rankine, Brayton)
• Turbocompounding

Graphic adapted from http://www.osti.gov/fcvt/HETE2004/Stabler.pdf

http://www.osti.gov/fcvt/HETE2004/Stabler.pdf�
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Thermoelectric generators transform waste heat into 
electrical power

Energy conversion efficiency
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ZT  =  T S2 σ / k
where

S = Seebeck coefficient 
σ = Electrical conductivity
k = Thermal conductivity
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Engine
block

Several automotive locations are being considered for 
TE generators
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Different locations in the car require different TE 
materials

oxide

low T intermediate  T high T

 Skutterudite is a good candidate for post-aftertreatment locations

• Critical parameters for practical 
viability

– Performance
– Cost and raw material 

availability
– Toxicity
– High temperature stability and 

durability
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Corning has multiscale TE modeling activities

• Objectives
– To provide guidance and help understanding for empirical research 

and measure progress
– To guide requirements for Corning’s advanced materials
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Model developed and validated with experiment data
Design Knobs
• Thermoelectric material properties
• Geometry 
• System Integration
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Prescribed Conditions
• TEG Location – temperature, space
• Driving Conditions 

Hot-side temperature dictated by 
above choices

Lower temperature in EU drive 
cycles pose challenges
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Model developed and validated with experiment data
Design Knobs
• Thermoelectric material properties
• Geometry 
• System Integration
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High performance n-type and p-type SKDs 

Developed high performance SKD materials:
n-type: ZTmax = 1.46 for at 800-850K 
p-type: ZTmax = 1.02 at 700-750K
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Material is the key, but heat exchanger design, 
contact resistance can degrade TEG performance
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Heat exchanger design is important:
There is a trade-off between generated power and backpressure

Vehicle speed @ 60 MPH
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Contact resistance is a key parameter to improve 
system efficiency

Thermal contact resistance impact Electrical contact resistance impact

These are challenging targets to meet

Vehicle speed @ 60 MPH
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Expected performance with our material, optimized heat 
exchanger and good contact resistances

• Exhaust temperature and mass flow rate are key to TE power output and 
efficiency.

• They are determined by drive conditions
• At 65 mph, 500W can be expected at post-aftertreatment location.
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Conclusions

• Key improvements in addition to material ZT and 
temperature range are needed to achieve targeted fuel 
savings:
– Reduction in thermal and electric contact resistances
– Light weight, low backpressure and high efficiency heat 

exchanger
• Hot side temperature is crucial for better efficiency

– Drive cycle affects exhaust temperature
– TEG location determines hot-side temperature

Corning is committed to deliver high quality TE elements.


