System Integration and Validation

Tim Burress

Oak Ridge National Laboratory

2013 U.S. DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

May 14th, 2013

Project ID: APE055

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start FY13
- Finish FY15
- Percent Complete: 22%

Budget

- Total project funding
 - DOE share 100%
- Funding for FY12:
 - \$0 K
- Funding for FY13:
 - \$350 K

Barriers & Targets

- Measurement of system and component efficiencies during transient conditions.
- Most commercially available power measurement systems have limitations in refresh rates, continuous monitoring, and customizability.
- Incorporation of custom-made Glidcop material in scaled IM rotor due to fabrication challenges and retention requirements.
- This project helps with program planning and the establishment and verification of all DOE targets.

Partners

- ORNL Team members
 - Cliff White
 - Chester Coomer
 - Steven Campbell
 - David Smith
 - Paul Chambon

- ANL
- NREL

Project Objectives/Relevance

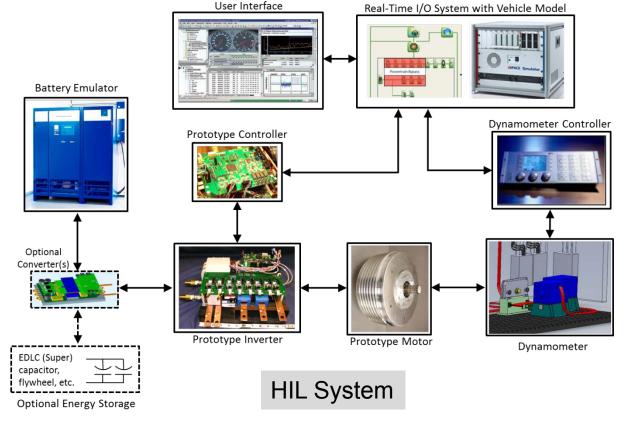
- **Overall Objective:** Use ORNL's hardware-in-the-loop (HIL) system as rigorous testing platform for development of next generation traction drive systems (TDS).
 - Validate traction drive system performance using five standard or custom drive cycles.
 - Provide feedback for DOE VTO APEEM program planning, target setting, and identifying R&D gaps.
 - Propose traction drive system refinements that address R&D gaps for the VTO APEEM program.

• FY13 Objectives (FY13):

- Design and fabricate universal circuit boards needed for operation on HIL system.
- Work jointly with ORNL's Vehicle Systems Integration (VSI) laboratory staff to define the needs of a high performance dynamometer and other HIL components.
- Perform bench-top HIL testing with induction motors and switched reluctance motors.

Milestones

Date	Milestones and Go/No-Go Decisions	Status
September 2013	<u>Milestone</u> :	
	Perform comparison studies of custom IM rotor technologies on bench top HIL unit and summarize test results in technical report.	On track.
September 2013	<u>Go/No-Go decision</u> : Controls compatible for performance testing.	

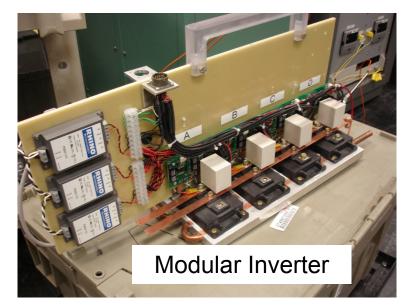


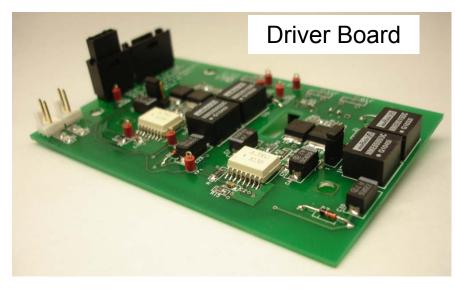
Approach/Strategy (1)

- Use HIL system as rigorous testing platform for development of next generation converters, inverters, and motors for traction drive systems (TDS).
 - Validate TDS performance using five standard or custom drive cycles.
 - Provide feedback for DOE VTO APEEM program planning, target setting, and identifying R&D gaps.
 - Propose TDS refinements that address R&D gaps for the VTO APEEM program.
- System emulates drive cycle conditions by generating the appropriate torque (throughout a drive cycle speed reference profile) for environmental conditions (temperature, head-wind grade, etc) and a given vehicle profile.
 - Drive-line matching: impacts of various transmission/transaxle, EV, or even HEV power split options.
 - Various energy storage options.
 - Emulation of various types of vehicles.

Approach/Strategy (2)

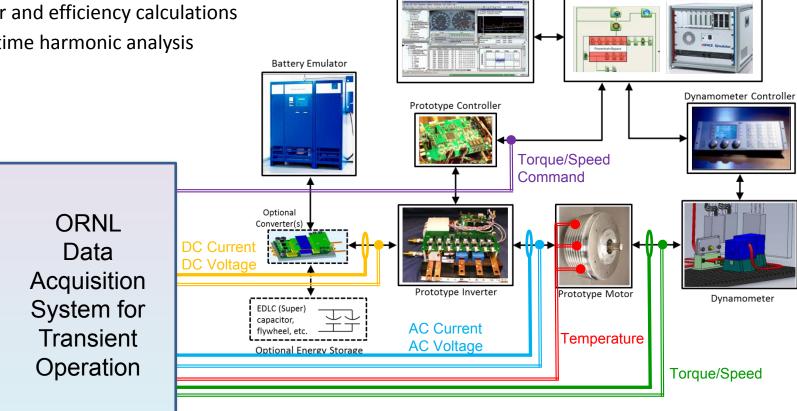
- Utilize VSI Lab battery emulator to assess impacts of converter and motor designs upon battery operation can be fully assessed.
 - E.g. Current ripple, high voltage, etc.
- Identify requirements and impacts of energy storage and matching.
 - Dc-dc (e.g. boost) can be emulated or implemented.
 - Emulation of various storage capabilities and power flow arrangements.
 - Super capacitor, flywheel, etc.
- Emulate or implement actual components.
 - Converter, energy storage, etc.
 - ICE or battery from ORNL, ANL, industry, etc.




Technical Accomplishments (1)

- Developed universal control board
 - Leveraged previous work by ORNL's Gui-Jia
 Su/Lixin Tang/Cliff White.
 - Modified design to fit project needs.
- Modular inverter assembled and ready for testing
 - Driver boards leveraged previous work by ORNL's Madhu Chinthavali/Cliff White.

Universal Control Board



Technical Accomplishments (2)

- Development of measurement system and data acquisition system initiated
 - Capable of continuously streaming measurement data.
 - Current (ac and dc)
 - Voltage (ac and dc)
 - **Torque and Speed**
 - Thermistor and thermocouple measurements
 - Power and efficiency calculations
 - Real-time harmonic analysis

User Interface

Real-Time I/O System with Vehicle Model

Collaborations and Coordination

Organization	Type of Collaboration/Coordination
DOE VTO Vehicle Systems Program (ORNL)	 ORNL VSI Lab David Smith, Paul Chambon, PT Jones. The Vehicle Systems Integration (VSI) lab at ORNL fosters DOE VTO cross-cutting activities in core areas such as Vehicle Systems, Advanced Combustion and Emissions, Fuels Technologies, and Advanced Power Electronics and Electric Motors. This project will help identify additional test equipment needs. Combines efforts on vehicle emulation with traction drive system requirements.
DOE VTO Vehicle Systems Program (ANL)	 ANL vehicle testing Henning Lohse-Busch, Erik Rask, Ted Bohn. System parameters from vehicle testing. Vehicle profiling (inertia, loss coefficients (drag, rolling, etc.)). E.g. Specify battery characteristics so VSI battery emulator can be programmed to represent commercial on-the-road pack.
	 Thermal management information.

Future Work

Remainder of FY13

- Complete development of dynamic inverter-motor-controls.
- Continue development of dynamic measurement and data acquisition system.
- Perform bench-top HIL testing with induction machines.
- Perform bench-top HIL testing with switched reluctance motor.

• FY14

Conduct drive-cycle testing of components on ORNL's VSI laboratory HIL system.

Summary

- Objective/Relevance: Use ORNL's hardware-in-the-loop (HIL) system as rigorous testing platform for development of next generation traction drive systems (TDS).
- **Approach:** Use HIL system as rigorous testing platform for development of next generation traction drive systems (TDS).
 - Validate TDS performance using five standard or custom drive cycles.
 - Provides feedback for DOE VTO APEEM program planning, target setting, and identifying R&D gaps.
 - Propose TDS refinements that address R&D gaps for the VTO APEEM program.
- **Collaborations:** Interactions are ongoing with several national laboratories and DOE Vehicle Systems Program.
- **Technical Accomplishments:** Completed universal control board design, initiated development of dynamic controls, prepared modular inverter, and initiated measurement system developments.
- Future work: FY13 efforts are on track, and FY14 plans are in place.

