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Overview 

Timeline 
Project Starts: Jan. 2011 
Project Ends: Dec. 2014 
Percent Completed: 60% 
 
 
 Budget 
• Total funding: $826K 

• FY 2011: $205K 
• FY 2012: $205K 

  
 

Partners 
• Jason Zhang and Jun Liu (PNNL), and 
Gao Liu (LBNL) 
• Johnson Control and PA Nanomaterials 
Commercialization Center. 
• In discussion with Nissan Tech Center 
(USA) for sample test. 

Barriers  
• Power and energy density 
• Cycle life 



Objectives 
 Achieve high performance Si anode materials by developing 

novel structured Si-carbon nanocomposites and polymer 
binders. 

 
Improve management of volume change and pulverization 

characteristics of Si-C anodes. 
 

Decrease initial irreversible capacity loss and increase 
coulombic efficiency of Si-C anodes. 
 

Improve both gravimetric and volumetric capacity, electrode 
kinetics and cycling life of Si-C anodes. 

 



Technical Approach 
 Synthesize Si-C nanocomposites with controlled 

nanostructures and composition to improve kinetics and 
cycling stability upon lithiation/delithiation and illuminate 
structure-property relationship. 
 

 Design mechanically stiff polymers with varying functional 
groups composition to test structure-property 
relationships. Understand the function of binders in Si 
anodes and uncover the key design features for new 
materials. 

  



I. Micro-sized Si-C Composite with 
Interconnected Nanoscale Building Blocks  

Technical Accomplishments 

The composite composed of interconnected 10-nm Si nanoparticles coated with carbon (20 wt%)  



II. Primary Building Block Size Effect in Micro-sized 
Si-C Composites 
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Si building block size of micro-sized Si-C composites significantly affects the first cycle 
coulombic efficiency and cycling stability.  

The 1st cycle efficiency Cycling stability 



15 nm 30 nm 80 nm 

SEM image of electrodes with SEI layers after 100 cycles: 

Slightly crack Deep crack Peel off 

III. Electrode Structure and Pulverization Tolerance 
in Micro-sized Si-C Composites 

Before cycling After 10 cycle without SEI layer 
SEM images of Si-C electrodes of 10 nm Si building blocks 

15 nm 
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Cycling efficiency 

Pulverization 

20 μm 



IV. Carbon-coating Effect 

Si building 
block size 15 

nm 
D/G Ratio 1st Efficiency 

Without C-
coating N/A 75% 

Carbon 
coating 2.3 78% 

Carbon 
coating at 

higher 
temperature 

2.1 86% 

C-coating: A) Reducing SiOx content; B) Increasing electrical contact.  
Si 
Si-C-Low 
Si-C-High 

Si 
Si-C-Low 
Si-C-High 

Si-C-High 
Si-C-Low 

Si-C-Low 
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Novel Wet Chemical Synthesis  Method: Large-scale, Mild condition, Structure tunable 

Amorphous SiOx nanocomposite 

0 100 200 300 400 500
0

400

800

1200

 

 Charge capacity
 Efficeincy

Cycle number

C
ap

ac
ity

 (m
A

h/
g)

40

60

80

100

 E
ffi

ci
en

cy
 (%

) Excellent long cycling 
performances  
(retention >95% for 350 
cycles) 
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Self-assembled porous Si materials with tunable pore size 
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V. Porous Si-C Composites: (A) Self-assembled 
Porous Structure 



Self-assembled Porous Si-C Composites 

Electrochemical Performances 

The self-assembled porous Si 
contains mesopores.  

Pore size: 5-10 nm 
Porous Si framework thickness : 10 nm 
Particle size: ~20 μm 
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VI. Porous Si-C composites:  (B) Templated 
Hierarchical Porous Structure 

200 nm pore 
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20 nm pore 

reductant 



32 μm 

Before cycling 

37 μm 

After 50 cycling 

• Porous structure helps 
compensate the volume 
change 

Comparison of lithiated electrode thickness change 

Before cycling After the 1st cycling 

VII. Volume Change Tolerance of Porous Si-C 
Composites 

Material 
Specific 
capacity 
(mAh/g) 

Tap 
density 
(g/cm3) 

Graphite 372  1.3 

Silicon 
nanoparticles 
(commercially 
available) 

3572 ~ 0.1 

SiOx 
nanocomposites 650 0.1 

Porous Si-C 
composite 1450 0.7 

Micro-sized 
Si-C composite 1961 0.8 
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VIII. Functional Aromatic Binders 
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 CA05
 CA10
 SPEEK
 SPAEN
 NaCMC

SPEEK:  DS = 0.72;   IEC=2.1 meq./g – sulfonate + ketone 

O O
O
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O
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0.72 0.28

Presence of carbonyl groups in SPEEK seems to 
be key to good cycling performance. 



Swelling test  in EC/DEC/DMC(1:1:1) 
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Lowers swelling to improve mechanical properties, but may 
decrease ion conductivity in the electrode.    

IX. Crosslinking Polymers to Decrease 
Electrolyte Uptake 

S-Radel based crosslinking polymer 
S-Radel:  IEC=2.5 meq./g – sulfone and sulfonate-containing binder 



Milestones 
 Synthesize and characterize three types of Si/SiOx-carbon 

nanocomposites. (completed) 
 

 Demonstrate new crosslinking chemistry involving sulfonates, 
carboxylates, and azide chemistries for low-swelling polymer 
binders. (ongoing) 
 

 Identify at least one Si/SiOx-carbon nanocomposite anode with a 
reversible specific capacity of at least 1000 mAh/g over 200 
cycles. (completed) 
 

 Identify and optimize at least one polymer binder and processing 
solvent that shows better cycling performance than the reported 
binders with commercial Si nanoparticles. (completed) 
 

 Supply laminates of the optimized electrodes with electrode 
capacity of 800 mAh/g that cycle 100 cycles to BATT PIs. (Aug. 
2013) 



Future Work 
 
 Optimizing composition and nanostructures of Si/SiOx-carbon 

composites (including Si/SiOx ratio, Si/C ratio, nanoparticle size, 
porous structures) for improved electrochemical performance. 
 

 Investigation on SEI of Si-based anode including formation, 
composition, structure and thermo-stability. 

 
 Working to further understand new binder performance with 

micro-sized Si-C composite. Undertaking new spectroscopic 
measurements of binder/Si-C interactions in situ under 
electrolyte/potential conditions. 



Summary 
 Synthesize a novel SiOx nanocomposite with excellent cycling ability. 

 
 Development of micro-sized Si-C composite anode materials with high 

volumetric and gravimetric capacity, excellent cycling stability and 
improved coulombic efficiency. 
 

 Development of micro-sized porous Si-C composite with tunable pore 
structures 
 

 Investigated structure and surface modification and their effect on 
electrochemical performances of the materials  
 

 Evaluate a series of functional binders and identify SPEEK binder for 
further design and improvement.  
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Technical Back-Up Slides 



Technical back up 

HRTEM (left) and corresponding EF-TEM mapping of carbon (right) in a cross-
section of micro-sized Si-C composite  



Technical back up 
80 nm 

80nm nanoparticles in micro-sized Si-C 
composites does not break after 100 
cycles. 

XRD of micro-sized Si-C composites with 
different sized Si nanoparticle building 
blocks 



Technical back up 

A capacity retention of 65% (2044/3149, based on the discharge capacity of the 
second cycle) is obtained after 100 cycles using SPEEK binder for commercial Si 
nanoparticles. 
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