SwRI[®]

Synthesis and Characterization of Silicon Clathrates for Anode Applications in Lithium-Ion Batteries

Kwai S. Chan, Ph.D. Institute Scientist Michael A. Miller, Ph.D. Institute Scientist

Department of Materials Engineering Southwest Research Institute[®] San Antonio, TX

DOE Annual Merit Review, Washington DC May 14-18, 2012

Project ES149

This presentation does not contain any proprietary or confidential information

BATT Batteries for Advanced Transportation Technologies

Overview

Timeline

- Program Start: January 2011
- Program End: December 2014

Budget

- DOE Share: \$1.15M
- Funding Received in FY11: \$299k
- Funding for FY12: \$149k

Barriers

- (A) Cost
- (C) Performance
- (E) Life

Targets

Specific Energy (W·h/kg)	Specific Power (W/kg)	Cycle-Life	Calendar Life (yr)
200 (EV)	316	1000	15
96 (PHEV)	316	3000 (40 mi equiv.)	15

Baseline Systems: Conoco Phillips CPG-8 Graphite/1 M LiPF₆+EC:DEC (1:2)/Toda High-energy layered (NMC)

Collaborators

- Arizona State Univ. (Candace Chan)
- Florida International Univ. (Jiuhua Chen)

Objectives - Relevance

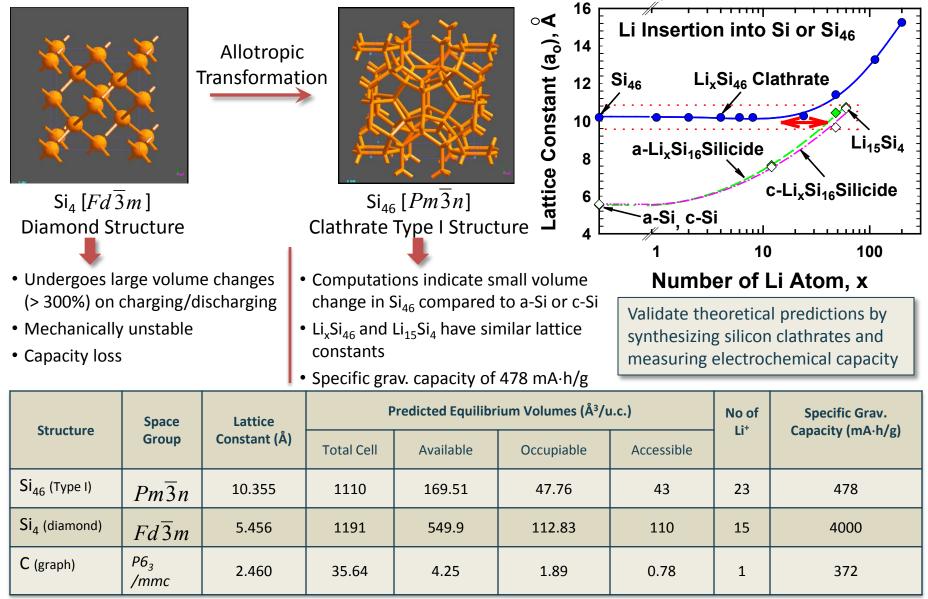
<u>Overall</u>

- Theoretically and experimentally assess the intrinsic physicochemical, mechanical and electronic advantages of Type I silicon clathrate (Si₄₆) over conventional (diamond) silicon (Si₄) as a high-performance anode material for Li⁺ batteries
- Demonstrate improved life and abuse tolerance of Li⁺ batteries using Si₄₆ and its metal-silicon analogues as anode materials

<u>Current</u>

- Employ first principles methods to engineer silicon clathrate compositions that exhibit small volume expansion/contraction, and high specific energy density, while avoiding capacity fading in comparison with conventional Si₄
- Synthesize and characterize Type I silicon clathrates (Si₄₆) and Type I metalsilicon clathrate alloys (M_xSi_{46-x}) – either empty or containing guest atoms
- Formulate and prepare silicon clathrate-based anode electrodes and assemble electrochemical half-cells for measurement of cyclic capacity

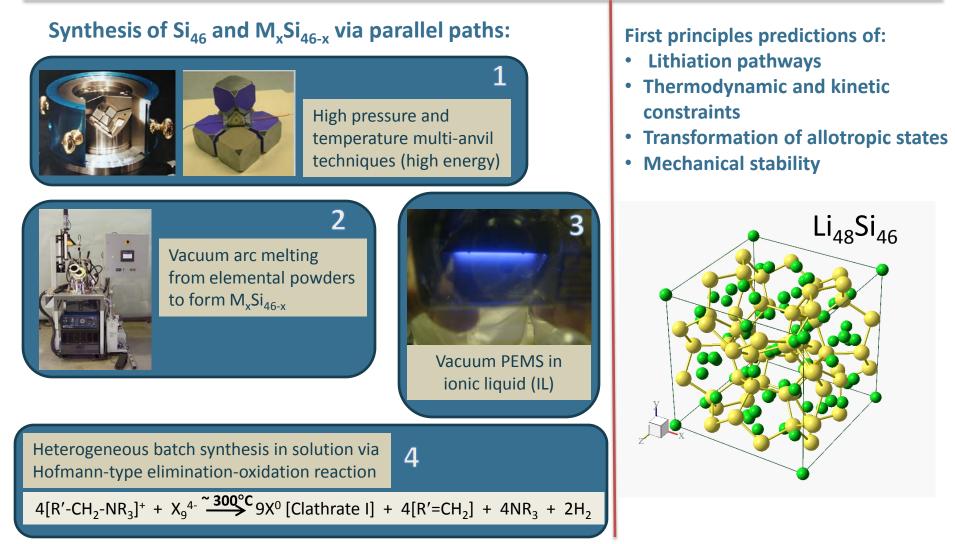
Milestones



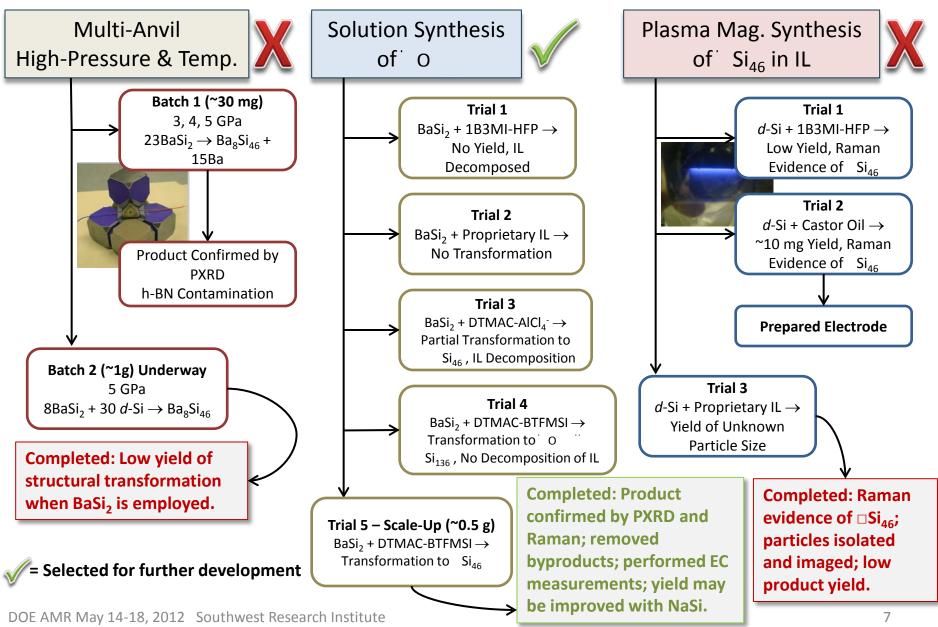
Target Date	Milestone	Status
06/2011	Prepare 1-2 gram quantities of Type I silicon clathrates by one or more synthesis methods	Complete
09/2011	Select one or two synthetic pathways for further development	Complete
09/2011	Identify possible reaction pathways (based on modeling results) for the formation of empty clathrates Si_{46} , Li_xSi_{46} , and $Li_{15}Si_4$	Complete
09/2011	Construct and evaluate an electrochemical half-cells using clathrate materials synthesized in Year 1	Complete
03/2012	Predict the Li ⁺ occupancy and lattice expansion potential of Type I metal-silicon clathrate alloys using classical and <i>ab initio</i> calculations	Complete
06/2012	Continue identifying possible reaction pathways for the formation of empty clathrates \Box Si ₄₆ , Li _x Si ₄₆ , Li ₁₅ Si ₄ , and Li _x M _y Si _{46-y}	Pending
09/2012	Synthesize hundreds of grams of Type I silicon clathrates and/or metal-silicon Type I clathrate alloys with complementary determination of structural purity	Pending

Strategy

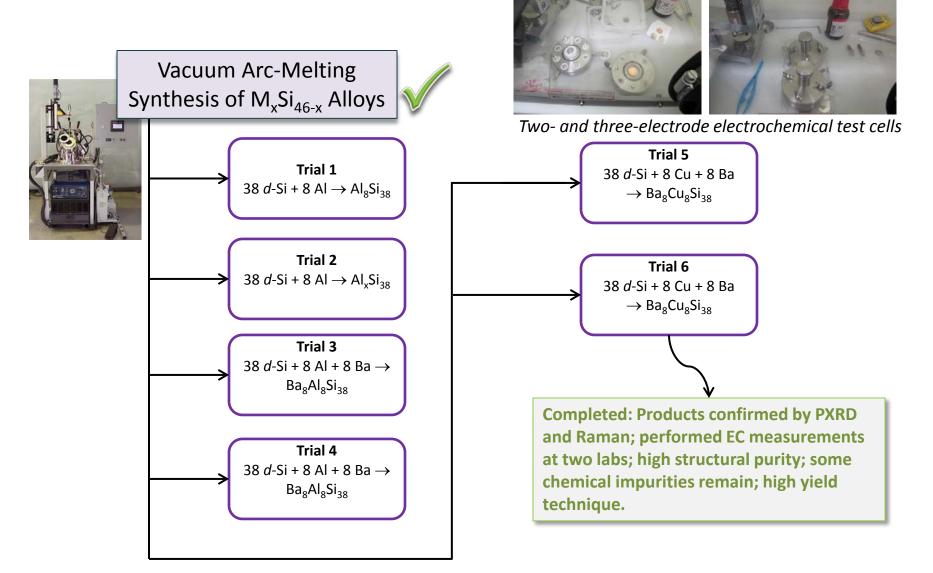
Asses the structural and electronic attributes of Type I clathrate Si₄₆ versus conventional Si₄



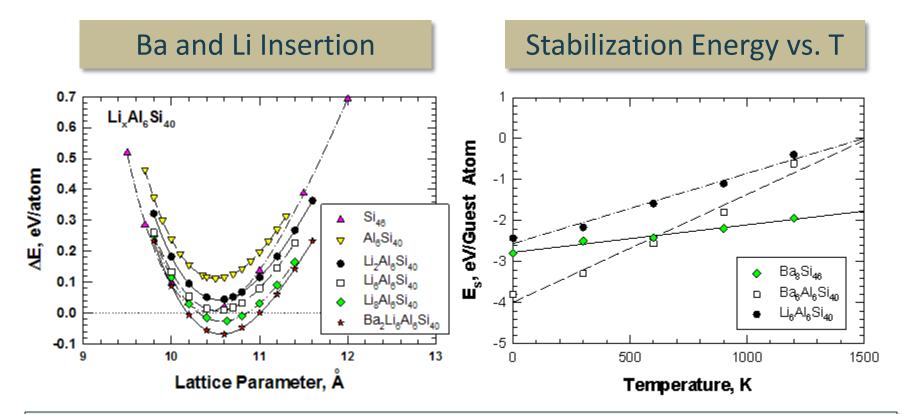
Approach


Theory

DOE AMR May 14-18, 2012 Southwest Research Institute

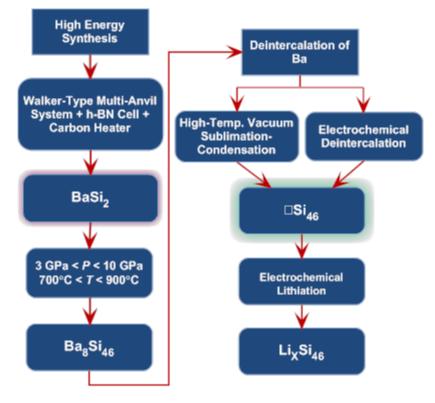

Overview of Accomplishments - Synthesis

Overview of Accomplishments – Synthesis (Cont.)

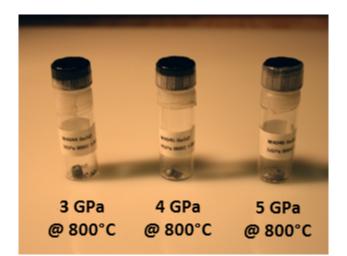


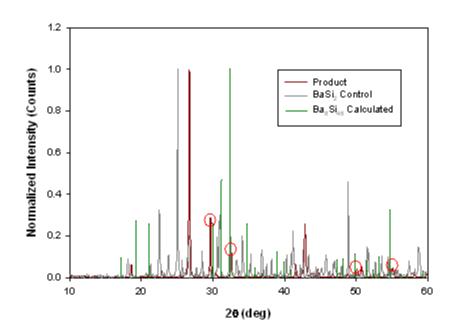
Overview of Accomplishments - Computations

 Computed energies of formation and stabilization using DFT and CPMD for various Type I clathrate compositions



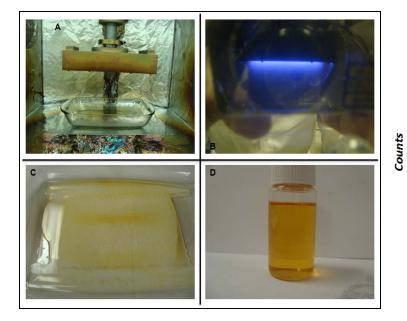
Li atoms are easier to extract from Al-substituted Si clathrates than Ba atoms

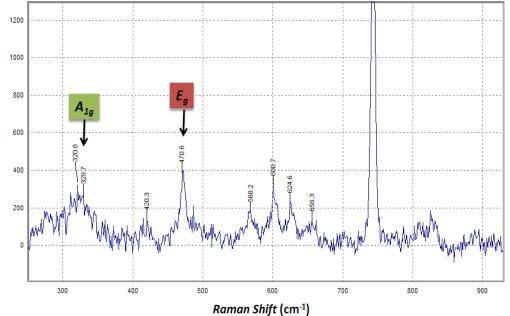

Accomplishments – Multi-Anvil Synthesis 🖁



High-Energy Multi-Anvil Synthesis of Ba₈Si₄₆

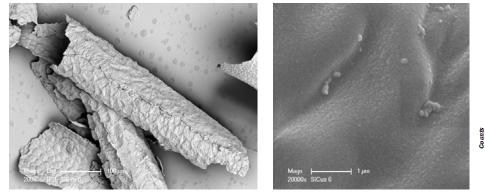
- PXRD indicates partial allotropic conversion of BaSi_2 to form $\mathsf{Ba}_8\mathsf{Si}_{46}$
- Structural impurity remains even after 5 GPa @ 800°C, due to stability of BaSi₂ (compared with the more reactive NaSi)
- Synthetic pathway not selected due to low yield and scalability



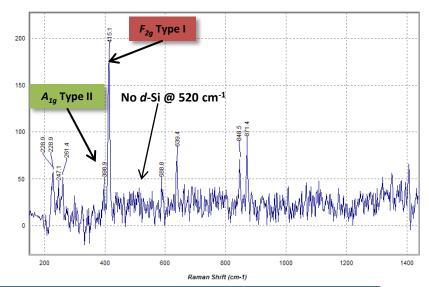

Accomplishments - PEMS Synthesis

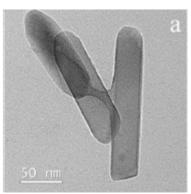
Direct Synthesis of Guest-Free Type I Silicon Clathrate – Plasma Magnetron/Imidazolium IL

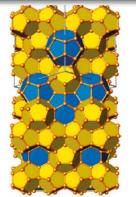
- Particle size and quantity too small to acquire PXRD
- NIR Raman spectroscopic microanalysis used to acquire the vibrational (phonon) spectrum
- First principles and normal mode computations were carried-out to predict Raman-active fundamental modes
- Synthetic pathway not selected due to low yield



Raman spectroscopic evidence for the formation of guest-free silicon clathrate (Type I) acquired from PEMS-synthesized nanoparticles. The positions of the theoretically-predicted A_{1g} and E_{g} phonon modes are shown.


Accomplishments - PEMS Synthesis


Direct Synthesis of Guest-Free Type I Silicon Clathrate – Plasma Magnetron/Castor Oil



SEM (backscattering) images of clathrate network particles formed from plasma-enhanced magnetron sputtering into pool of IL

NIR Raman spectroscopic microanalysis shows large contribution of the F_{2g} mode for Type I with a much smaller contribution from A_{1g} mode, indicating that small domains of Type II clathrate were formed.

Rod-shaped, crystalline nanoparticles of Na_xSi_{136} and K_xGe_{136} (clathrate II) recently observed under HRTEM by Simon et al. 2011

Simon, P. et al., JACS, 2011, 133(19), 7596-7601

Low Temperature Route to Synthesis of Guest-Free Type I Silicon Clathrate

$$n[R'-CH_2-NR_3]^+ + X_y^{n-} \xrightarrow{\sim 300^{\circ}C} yX^0 [Clathrate I] + n[R'=CH_2] + nNR_3 + 2H_2$$

$$R' = -(CH_2)_n - CH_3$$

$$R = -CH_3, H$$

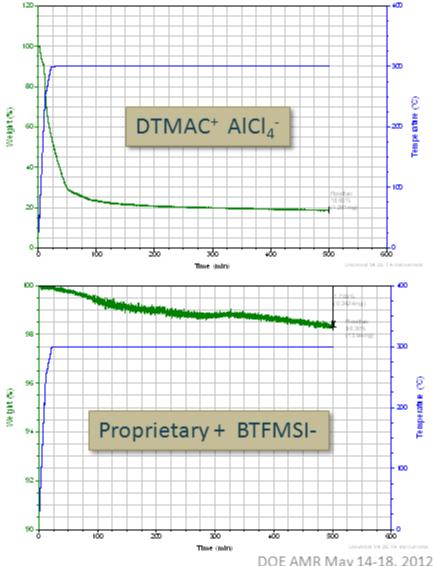
$$X = Si, Ge, Sn$$

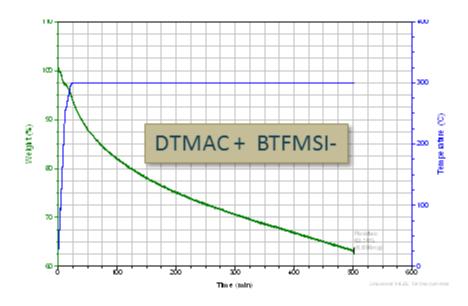
$$e.g., BaSi_2 \Longrightarrow Si_2^{2-1}$$

$$Na_4Si_9 \Longrightarrow Si_9^{4-1}$$

 $H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}C$ H_{4} $H_{3}C$ H_{4} $H_{3}C$ H_{4} $H_{3}C$ H_{4} H_{4} $H_{3}C$ H_{4} $H_{3}C$ H_{4} H_{4} H

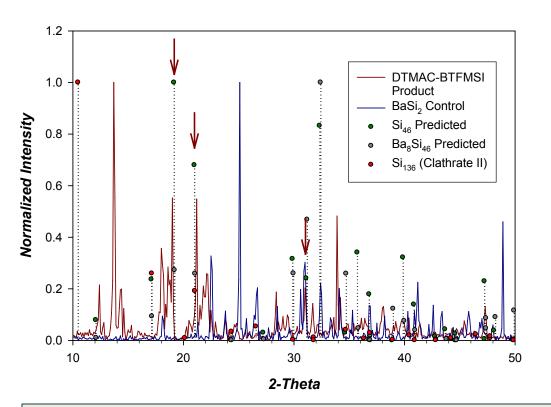
Slow oxidation of cluster anions (X_y^{n-}) and Hofmann-type elimination of an organic ammonium salt (ionic liquid)


First Step: Find or synthesize IL that is stable at high temperatures over at least 24 h:

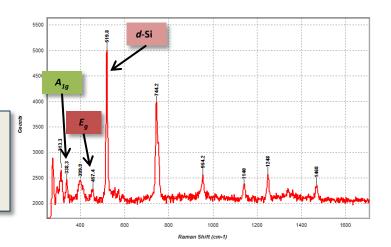

- I. Dodecyltrimethylammonium chloride (DTMAC)+ AlCl₃, forms liquid eutectic with AlCl₄⁻.
- II. Proprietary IL (sulfonyl imide anion), claimed to have high stability.
- III. Synthesize bis(trifluoromethylsulfonyl)imide [BTFMSI] anion of DTMAC, should have high thermal stability.

Grovenstein, E. Jr.; Stevenson, R.W. Carbanions III. Cleavage of tetraalkylammonium halides by sodium in liquid ammonia. *J. Am. Chem. Soc.* 1959, *81*, 4850-4857. Guloy, A.M. et al. *Nature*, 2006, *443*, 320-323.

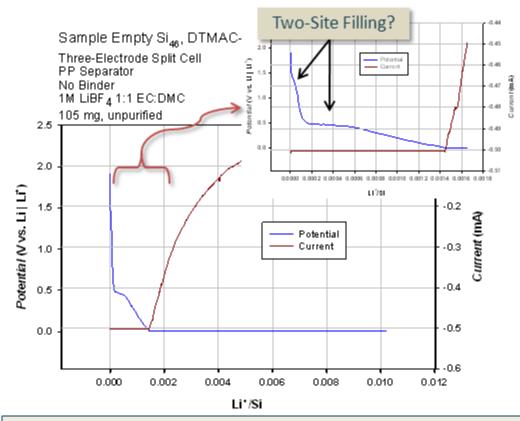
Surveying the Thermal Stability of ILs



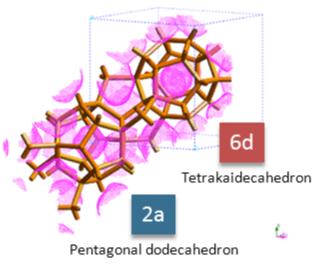
- DTMAC-BTFMSI ionic liquid also forms eutectic (like DTMAC-AlCl₄), transitioning to a liquid slightly above room temperature
- TGA shows that thermal stability is significantly improved with BTFMSI⁻ counter ion
- Proprietary IL showed best thermal stability, but yielded no clathrate structure from silicide (attributed to unsuitable cation for reaction mechanism)



Characterization of Products


NIR-Raman spectrum shows evidence for the formation of guest-free silicon clathrate (Type I) as noted, along with unreacted silicide (d-Si) and organic side products. Reaction under these conditions does not yield the Type II clathrate (Si₁₃₆).

- PXRD shows evidence of structural transformation
- Several reflections of product are correlated with theoretical reflections of Si₄₆
- Type II clathrate Si₁₃₆ not formed as secondary or minor phase
- Purification method needed to remove unreacted BaSi₂, dodec-1-ene, and trimethylammonium chloride
- Product yield should improve with the more reactive NaSi

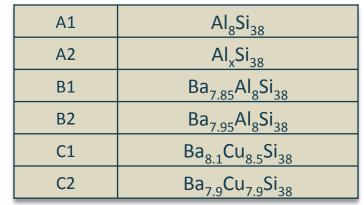


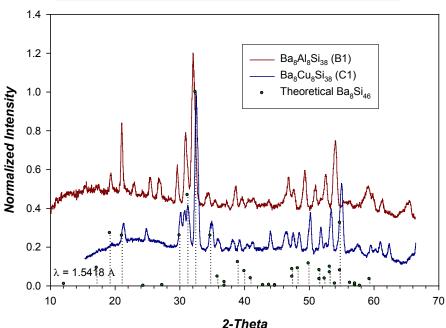
Electrochemical Half-Cell Measurements

Electrochemical measurements show that Li⁺ can be intercalated into as-synthesized empty Type I silicon clathrate (Si₄₆). Achieving theoretical capacities should be realized with understanding of, and improvements in, the formation of a stable SEI and appropriate electrode composition.

- Li⁺ cathodic intercalation into as synthesized Si₄₆ after SEI formation
- OCP: 2.59 V vs. Li | Li*
- Two intercalation plateaus observed, possibly attributed to space-filling of the two framework polyhedra (2a and 6d sites) in Si₄₆
- Li⁺ intercalation at C/100 rate is demonstrated, but may be constrained by initially-wide band-gap of empty Si₄₆ (2.5 eV)
- Assumes 100% purity, actual purity may be much lower (20-50%)

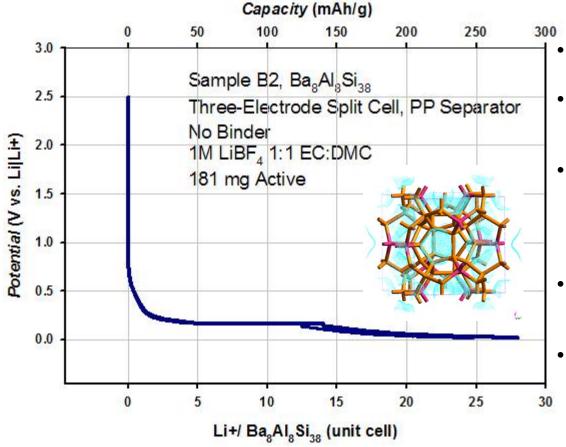
Accomplishments - Vacuum Arc-Melt Synthesis




Synthesis of Ba²⁺ Intercalated, Metal-Substituted Type I Silicon Clathrate via Arc Melting

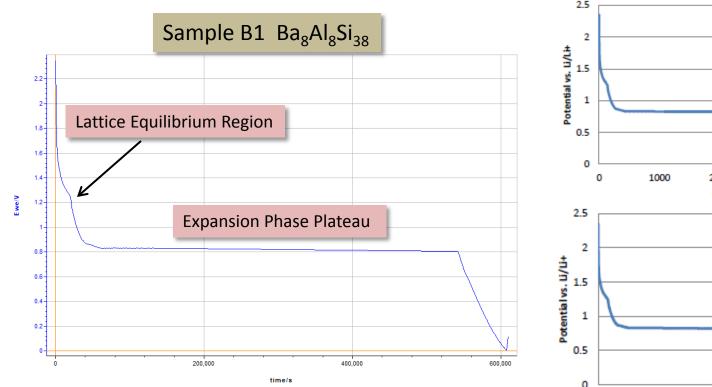
- Al- and Cu-substituted Type I silicon clathrates successfully formed, though only possible in the presence of guest atoms (Ba)
- Arc-melting process yielded material of high structural purity without secondary phase formation of Type II clathrates or *d*-Si
- Other compositions consisting of different framework substitutions and guest atoms are also possible

Materials prepared for SwRI by Candace Chan, ASU



Accomplishments - Vacuum Arc-Melt Synthesis

Electrochemical Half-Cell Measurements: Capacity Analysis without Binder



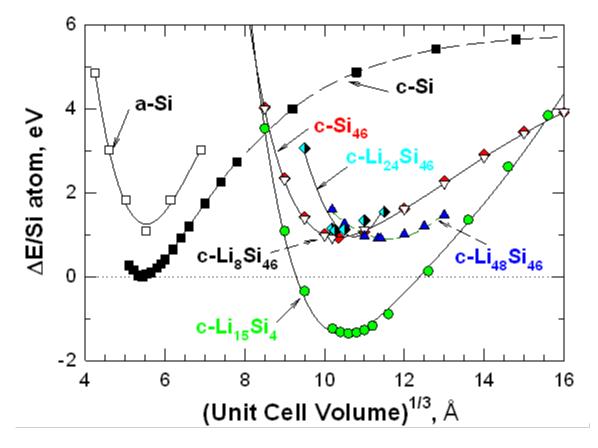
- Cathodic intercalation of Li⁺ into Ba₈Al₈Si₃₈ clathrate electrode
- Pressed electrode, mechanically stable without binder or conductive additive
- First cycle capacity is shown within the lattice equilibrium range (i.e., up to the theoreticallypredicted number of Li atoms without lattice expansion)
- Li ions intercalate into lattice guest sites even while Ba guest atoms are tightly bound
- Higher capacities are achievable with lattice expansion ⇒ next slide

Accomplishments - Vacuum Arc-Melt Synthesis

Electrochemical Half-Cell Measurements: Beyond the Lattice Equilibrium Region

- Lattice equilibrium region; i.e., little or no lattice expansion for x < 50
- Expansion phase plateau may be accompanied by lattice expansion ⇒ first-principles calculations underway to assess degree to which lattice expands in this phase

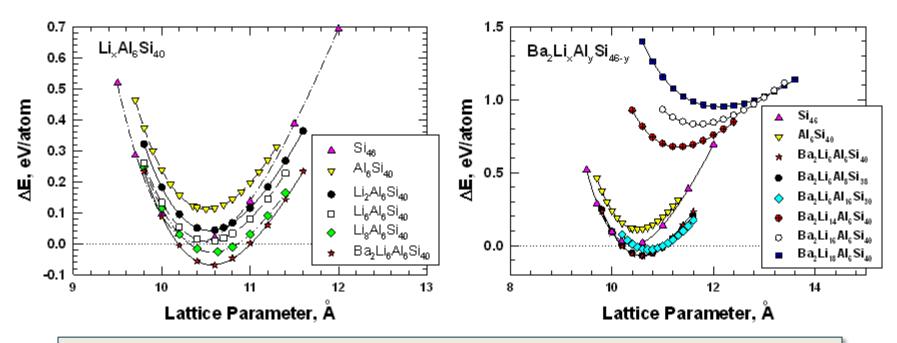
0 1000 2000 3000 4000 5000 Capacity (mAh/g) 2.5 1.5 1 0.5 0 50 100 150 200 250 300 350 400 x in Li_xBa_yAl₈Si₃₈


300 – 350 Li⁺ intercalated into Ba-occupied lattice: corresponds to 8-9 Li+/Si

Measurements made by Candace Chan, ASU, for SwRI

Accomplishments - Computations

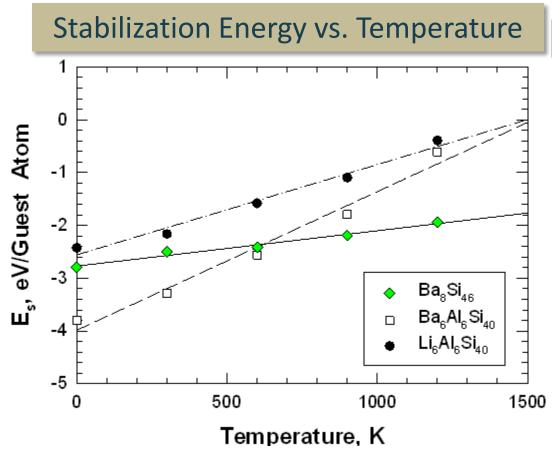
Computed Energies of Formation for Li Insertion in Si₄₆



- Up to 48 Li atoms can be inserted into empty Si₄₆ without causing significant lattice expansion
- The unit cells of Li_xSi₄₆ and Li₁₅Si₄ are comparable in volume

Accomplishments - Computations

Computed Energies of Formation for Ba and Li Insertion in Various Type I Clathrate Compositions



Al-substituted Si clathrates with Ba holds fewer number (less than 48) Li guest atoms than empty Si46 clathrates when the unit cell begins to expand.

Accomplishments - Computations

- Ba and Al stabilize the clathrate structure better than Li, making Ba guest atoms difficult to remove at any temperature
- Li atoms are relatively easy to remove from the clathrate structure
- Theoretical results are consistent with experimental observations: small anodic current for deintercalation of Ba

Collaborations

- Dr. Candace K. Chan, Assistant Professor, Materials Science & Engineering, Arizona State University, Tempe, AZ: Providing materials, process expertise, and initial EC data on arc-melt synthesis of metal-substituted silicon clathrates; co-inventor
- Dr. Jiuhua Chen, Assoc. Professor, Assoc. Director of the *Center for the Study of Matter at Extreme Conditions* (CeSMEC), Mechanical and Materials Engineering Department, Florida International University, Miami, FL: Provided laboratory services and technical expertise on multianvil synthesis

Future Work

- Perform first-principles (DFT and CPMD) computations to identify possible reaction pathways for the formation of empty clathrates Si₄₆, Li_xSi₄₆, Li₁₅Si₄, and Li_xM_ySi_{46-y.}
- Synthesize hundreds of grams of Type I silicon clathrates and/or metal-silicon Type I clathrate alloys with complementary determination of structural purity via downselected processing methods (arc-melting and solution synthesis method).
- Continue half-cell electrochemical characterization tests on silicon clathrate anodes prepared from empty Si₄₆ and metalsubstituted Type I silicon clathrate (M₈Al₈Si₃₈) materials

Summary

- Selected two pathways for synthesis of Type I silicon clathrate compounds:
 - Bulk solution, Hofmann-type oxidation-elimination reaction in IL at elevated temp.
 - Vacuum arc melting (for metal-substituted clathrate alloys)
- Demonstrated the structural transformation of silicide to clathrate compositions, though yield needs further improvement in the case of solution synthesis
- Li⁺ intercalation into pure (empty) and metal-substituted (alloy) silicon clathrates has been experimentally validated, consistent with theoretical predictions
- First principles DFT and CPMD computations predict excess stability (exothermic) of Ba guest atoms in clathrate structures, compared with Li guests, which explains why Ba guest atoms are difficult to remove by electrochemical means

Project Team

Carol A. Ellis-Terrell, M.S., Research Scientist: *material synthesis, EC measurements*

Wuwei Liang, Ph.D., Sr. Research Engineer: DFT and CPMD computations

Thomas L. Booker, Engineering Technologist: *engineering design and measurements*