SwRI[®]

Synthesis and Characterization of Silicon Clathrates for Anode Applications in Lithium-Ion Batteries

Kwai S. Chan, Ph.D. Institute Scientist Michael A. Miller, Ph.D. Institute Scientist

Department of Materials Engineering Southwest Research Institute[®] San Antonio, TX

DOE Annual Merit Review, Washington DC May 13-17, 2013

Project ES149

This presentation does not contain any proprietary, confidential, or otherwise restricted information

BATT Batteries for Advanced Transportation Technologies

Overview

Timeline

- Program Start: January 2011
- Program End: December 2014

Budget

- DOE Share: \$1.15M
- Funding Received in FY12: \$299K
- Funding for FY13: \$296K

Barriers

- (A) Cost
- (C) Performance
- (E) Life

Targets

Specific Energy (W·h/kg)	Specific Power (W/kg)	Cycle-Life	Calendar Life (yr)
200 (EV)	316	1000	15
96 (PHEV)	316	3000 (40 mi equiv.)	15

Baseline Systems: Conoco Phillips CPG-8 Graphite/1 M LiPF₆+EC:DEC (1:2)/Toda High-energy layered (NMC)

Collaborators

- Arizona State Univ. (Candace Chan)
- Arizona State University (Xihong Peng)
- Florida International Univ. (Jiuhua Chen)

Objectives - Relevance

<u>Overall</u>

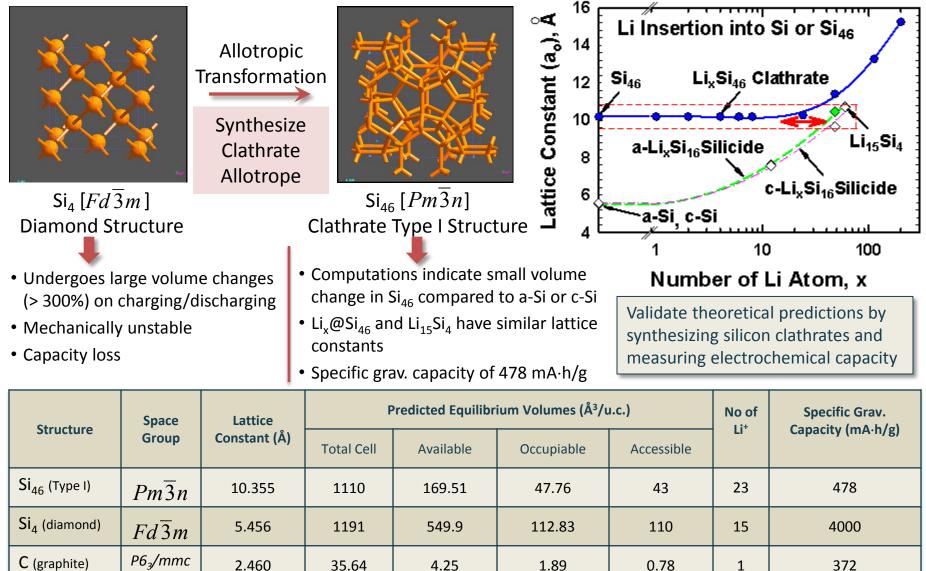
- Theoretically and experimentally assess the intrinsic physicochemical, mechanical and electronic advantages of Type I silicon clathrate (Si₄₆) over conventional (diamond) silicon (Si₄) as a high-performance anode material for Li⁺ batteries.
- Demonstrate improved life and abuse tolerance of Li⁺ batteries using Si₄₆ and its metal-silicon framework analogues (A_x@M_ySi_{46-y}) as anode materials.

<u>Current</u>

- Employ first principles computations to: (a) predict Li⁺ occupancy and lattice expansion potential of Type I silicon and metal-silicon clathrate alloys (A_x@M_ySi_{46-y}); and, (b) identify possible reaction pathways for the formation of the corresponding lithiated species [Li_n@Si₄₆ and Li_n@(A_x@M_ySi_{46-y})].
- Synthesize and characterize batch-scale quantities (200 g) of Type I silicon clathrates (Si₄₆) and/or Type I metal-silicon clathrate alloys (A_x@M_ySi_{46-y}) either empty or containing guest atoms.
- Experimentally assess the capacity and cyclability of clathrate anodes as a function of electrolyte/additive formulations and formation techniques.

M = Metallic Framework Atom A = Metallic Guest Atom

Milestones



Target Date	Milestone	Status
06/2012	Identify possible reaction pathways for the formation of empty clathrates \Box Si ₄₆ , Li _n @Si ₄₆ , Li ₁₅ Si ₄ , and Li _n @(A _x @M _y Si _{46-y})	Complete
09/2012	Synthesize 100-200 g of Type I silicon clathrate (Si ₄₆) and/or metal-silicon Type I clathrate alloys with complementary determination of structural purity \Rightarrow 200 g of Ba ₈ @Al ₈ Si ₃₈ synthesized	50% Complete
01/2013	Construct and evaluate several electrochemical half-cells using anode materials synthesized in Year 2, combined with best-case additives and electrolyte formulations	Complete
04/2013	Characterize electrochemical properties of silicon clathrate anodes made from Year 2 materials	Pending
07/2013	Identify structural and mechanical states of silicon clathrate anodes during lithiation and delithiation processes and validate against theoretical calculations	Pending
09/2013	Achieve reversible capacity of 400 mAh/g after 50 cycles at C/15 for either Si_{46} or $A_8@M_ySi_{46-y}$ (A = Ba, Na; M = Al, Cu)	Pending

Strategy

Asses the structural and electronic attributes of Type I clathrate Si₄₆ versus conventional Si₄

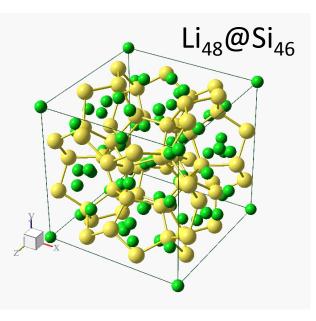
Overview of Approach

Experiment

Theory

Synthesis of Si_{46} and $A_x@(M_ySi_{46-y})$ via parallel paths:

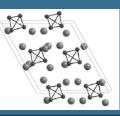
Vacuum arc melting from elemental powders to form A_x@M_ySi_{46-y}



Vacuum PEMS onto ionic liquid (IL)

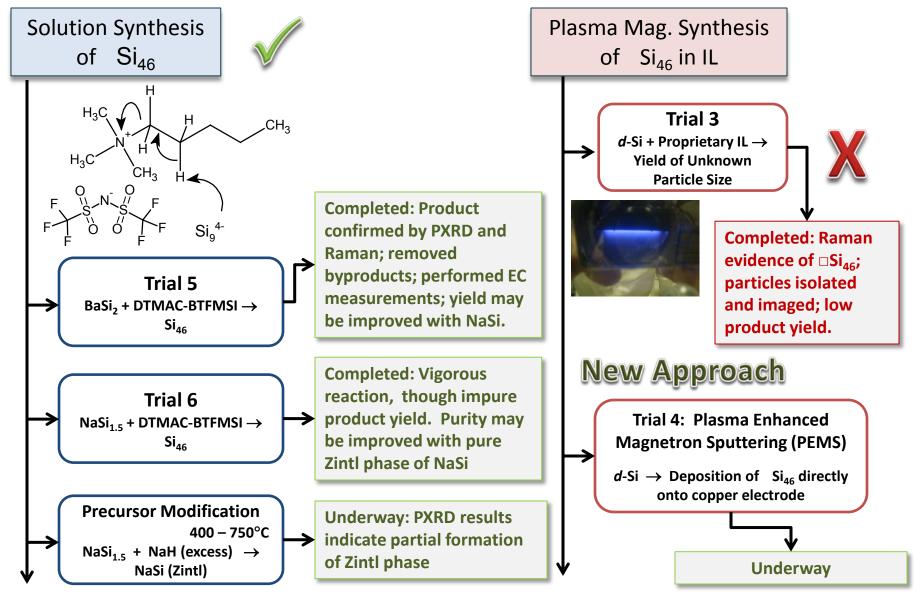
3

First principles predictions of:

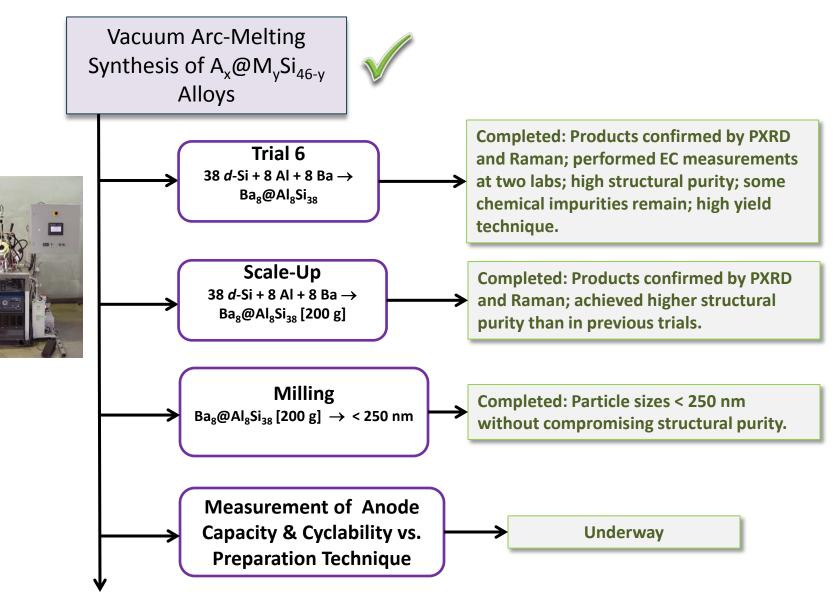

- Lithiation pathways
- Thermodynamic and kinetic constraints
- Transformation of allotropic states
- Mechanical stability

Heterogeneous batch synthesis in solution via Hofmanntype elimination-oxidation reaction

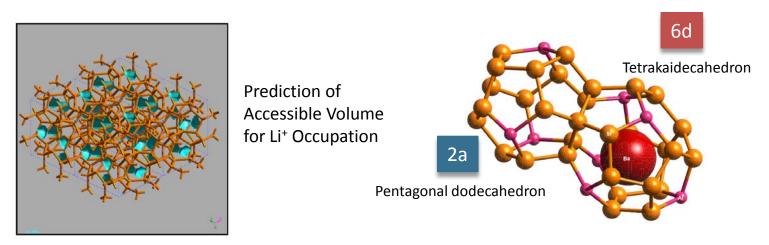
 $4[R'-CH_2-NR_3]^+ + Si_4^{4-} \xrightarrow{\sim} 300^{\circ}C 9Si^0 [Clathrate I] + 4[R'=CH_2] + 4NR_3 + 2H_2$



DOE AMR May 13-17, 2013 Southwest Research Institute

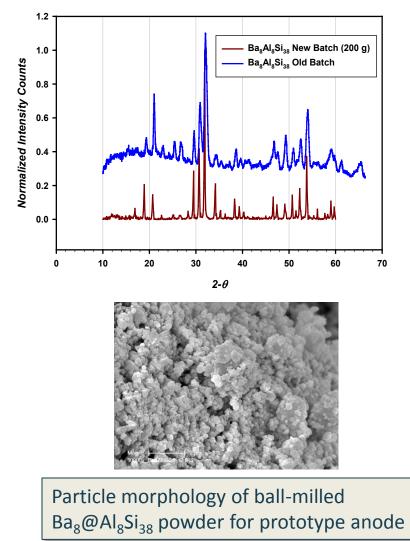

Approach - Synthesis

//= Selected for further development

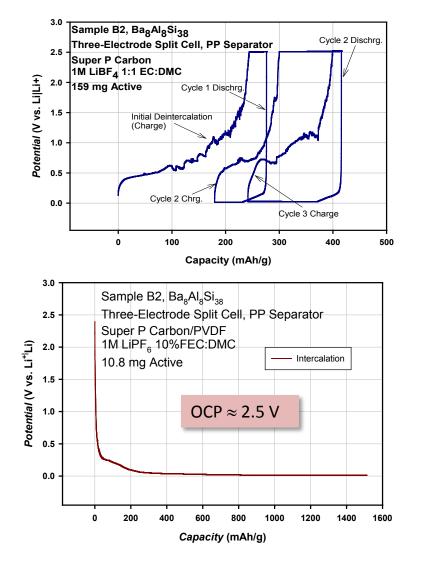

Approach – Synthesis (Cont.)

Approach - Computations

- Compute energies of formation and stabilization using DFT and Carr-Parrinello Molecular Dynamics (CPMD) levels of theory for various Type I clathrate compositions.
- Predict the excess stability and lattice expansion effected by different ratios of Ba guests and Al framework atoms in Ba_x@Al_ySi_{46-y} clathrate (Type I) when lithium atoms are intercalated to yield Li_n@(Ba_x@Al_ySi_{46-y}).
- Predict the excess stability and lattice expansion effected by intercalation of Na and Li guest atoms into silicon clathrate (Si₄₆) and Al_ySi_{46-y} to yield Na_n@(Li_x@Si₄₆) and Na_n@(Li_x@Al_ySi_{46-y}).

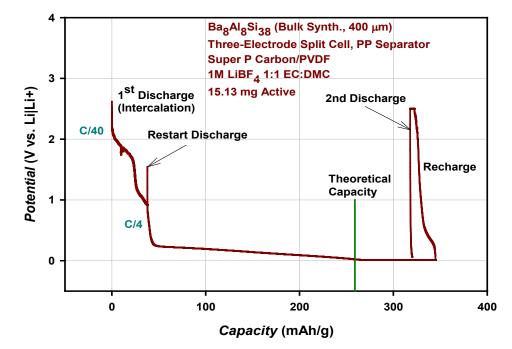

Accomplishments - Vacuum Arc-Melt Synthesis

Scale-Up Synthesis of Metal-Substituted Type I Silicon Clathrate via Arc Melting


- Framework-substituted Type I clathrate Ba₈@Al₈Si₃₈ successfully synthesized in bulk (200 g).
- Employed large-volume vacuum arc melter.
- Arc-melting process yielded material of higher structural purity than previous smallscale batches without secondary phase formation of Type II clathrates or *d*-Si.
- Scale-up synthesis of this clathrate material enabled ball milling techniques to be employed for formation and evaluation of prototype anode.

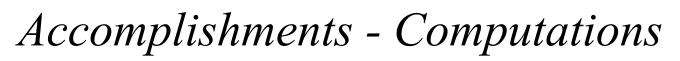
Accomplishments - Vacuum Arc-Melt Synthesis

Electrochemical Half-Cell Measurements: Capacity & Cyclability of Compounded Anode

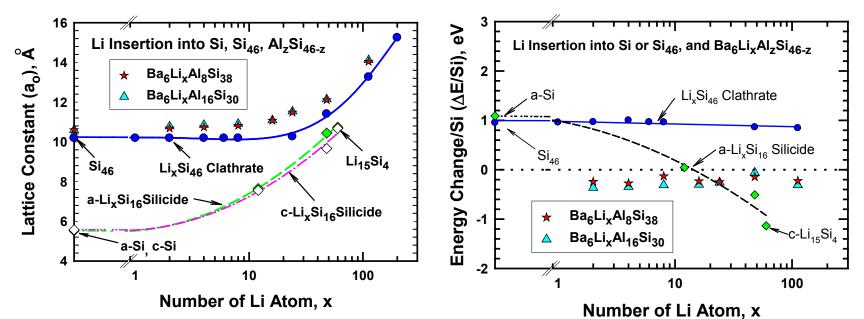


- Compounded anode of Ba₈@Al₈Si₃₈ without binder (top) formed by mechanical compression into freestanding disks (1 cm diam. × 3 μm thick).
- Anodes as prepared tend to be diffusionally constrained at rates \geq C/14.
- Li⁺ intercalate into lattice guest sites even while Ba guest atoms are tightly bound.
- First-cycle net (irreversible) loss for this un-optimized anode is 24% of the theoretical capacity (259 mA·h/g).
- Potential and/or current fluctuations point to instabilities in SEI formation that persist beyond second cycle.
- Anode formed by thin-casting slurry composed of Ba₈@Al₈Si₃₈, carbon additive, and binder (bottom) extended capacity beyond theoretical limit: 1500 mA·h/g based on 10.8 mg of active material.

Accomplishments - Vacuum Arc-Melt Synthesis



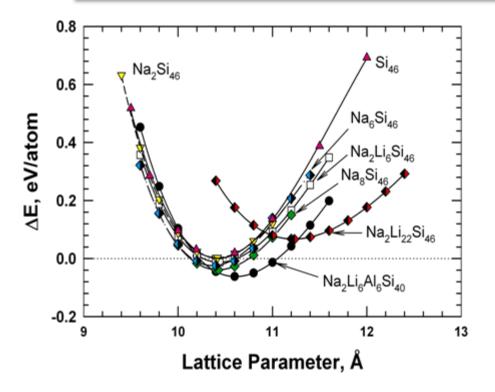
Electrochemical Half-Cell Measurements: Ball-Milled Anode Material



- Time required to attain a stable OCP (2.7 V) is significantly shortened for prototype anode incorporating ball-milled (< 250 nm) Ba₈@Al₈Si₃₈.
- Intercalation kinetics are notably faster: a 10-fold increase in C-rate is achievable, while surpassing the theoretical capacity as noted.

Additional studies needed to understand root cause of first-cycle capacity loss and make necessary changes to anode composition

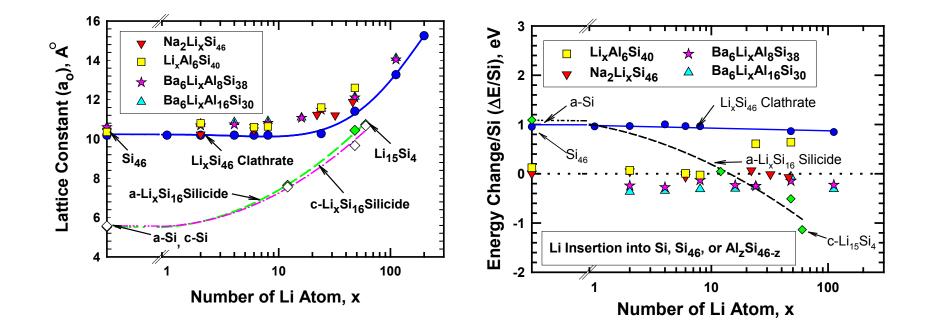
Comparisons of Computed Lattice Constant and Energy Change as a Function of Li Insertion in A_x@M_ySi_{46-y} vs. Si₄₆ vs. Si₄



- Optimum ratios of Ba guests and Al framework atoms required to attain a stable alloyed Si clathrate structure with limited volume expansion during Li intercalation have been determined.
- Li_n@(Ba₆@Al₈Si₃₈) and Li_n@(Ba₆@Al₁₆Si₃₀) both allow insertion of up to 24 Li atoms without Ba removal, without significant increase in lattice constant

Accomplishments - Computations

Intercalation and Stabilization of Silicon Clathrate Structures Using Sodium Atoms


- CPMD computations indicate that Na guest atoms tend to stabilize silicon clathrate structures and their framework alloys ⇒ Energy of formation falls < 0.
- Intercalation of Li atoms further reduces energy of formation below zero without a volume expansion.
- Energy of formation becomes positive again when ≥ 22 Li atoms are inserted, accompanied by 8% increase in unit cell volume.

Results suggest that Li intercalation into Na-stabilized Si₄₆ is energetically favored over empty silicon clathrate structures.

Accomplishments - Computations

Computed Energies of Formation for Na and Li Insertion in Al-substituted Type I Clathrate Compositions

Identified compositions of Na-stabilized or Al-substituted Si clathrates that can be lithiated to form stable compounds comparable to a-Li_xSi or c-Li_xSi

Collaborations

- Dr. Candace K. Chan, Assistant Professor, Materials Science & Engineering, Arizona State University, Tempe, AZ: Providing materials, process expertise, and initial EC data on arc-melt synthesis of metal-substituted silicon clathrates; co-inventor
- Dr. Jiuhua Chen, Assoc. Professor, Assoc. Director of the *Center for* the Study of Matter at Extreme Conditions (CeSMEC), Mechanical and Materials Engineering Department, Florida International University, Miami, FL: Provided laboratory services and technical expertise on multi-anvil synthesis
- Dr. Xihong Peng, Assistant Professor, Department of Applied Science and Mathematics, College of Technology and Innovation, Arizona State University at the Polytechnic Campus, Mesa, AZ; Providing first-principles computation expertise and DFT computations using the VASP code for comparisons against CPMD results.

Future Work

- Characterize electrochemical properties of silicon clathrate anodes made from Year 2 materials (arc-melt Ba₈@Al₈Si₃₈) with Graphenol[®] (graphene) as conductive additive.
- Solution synthesis of empty Si₄₆ using converted NaSi (Zintl phase).
- Perform post-mortem analyses of clathrate anodes to map the structural and mechanical states at various lithiation levels using a suite of characterization techniques (CP-MAS-NMR, Raman, XRD, Neutron Diffraction).
- Perform first-principles computations to compare with experimental observations and to verify lithiation pathways and products.
- Submit sample to LBNL (Vince Battaglia) for half-cell testing and independent validation.

Summary

- Synthesized empty and Al-substituted silicon clathrates via several methods; down-selected to arc-melting and directsolution synthesis method based on scalability.
- Synthesized 200 g of Ba₈@Al₈Si₃₈ by an industrial vacuum arcmelt technique.
- Predicted the Li⁺ occupancy and lattice expansion potential of Type I metal-silicon clathrate alloys using classical and *ab initio* calculations.
- Identified possible reaction pathways for the formation of empty clathrates
 ^{Si}₄₆, Li_x@Si₄₆, Li₁₅Si₄, and Li_x@M_ySi_{46-y}.
- Performed electrochemical characterization of Ba₈@Al₈Si₃₈ anodes at several C-rates for limited cycles.

Project Team

Carol A. Ellis-Terrell, M.S., Research Scientist: *material synthesis, EC measurements*

Wuwei Liang, Ph.D., Sr. Research Engineer: DFT and CPMD computations

Thomas L. Booker, Engineering Technologist: *engineering design and measurements*