Stoichiometric Compression Ignition (SCI) Engine Concept

DOE Contract DE-FC26-05NT42416

Rich Winsor and Kirby Baumgard John Deere Power Systems

Outline

History Objectives Overall Concept Major Issues Comparison to Other Concepts Status of Development Further Work Acknowledgements

Operation of Diesel Engines at Stoichiometric

Starting

Full load at low speeds

Military Investigations in 1989 – 1991 for increased power

Full time Stoichiometric Compression Ignition for emission control on DDC Series 60 prototype engine in November, 1981

- Heavy-duty vehicle engine of reasonable size and cost
- Engine meeting 2010 on-highway emission standards
- Superior fuel economy and life cycle cost
- Applicability to off-highway vehicles

SCI Concept

- Operate compression ignition engine at stoichiometric and use three-way catalyst for control of NOx, HC, and CO
- Use continuously-regenerating diesel particulate filter for PM control
- Obtain superior fuel efficiency because of rapid combustion near TDC and efficient air system with reduced exhaust aftertreatment losses

Major SCI Issues

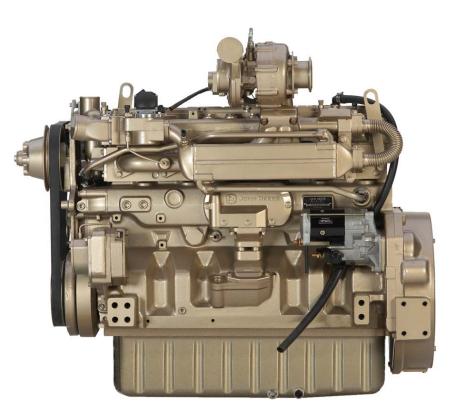
- Smoke and PM at ϕ = 1.00
- NOx level and three-way catalyst efficiency
- High exhaust temperature
- Control to maintain stoichiometry, especially during rapid load changes
- Transient response

Comparison of Alternative Combustion Concepts

- Massive EGR high percentages of EGR at relatively rich A/F ratio to reduce NOx
- Extreme EGR very high EGR to give true Low Temperature Combustion (LTC) with low NOx and PM
- HCCI homogeneous charge ignites and produces very little NOx and PM (requires EGR for higher loads)
- PPCI some homogeneous charge ignites near TDC, while remainder of fuel is injected relatively late to minimize NOx
- SCI conventional diesel combustion at near optimum timing with φ = 1

Full Load Estimates of Low Emission Concepts

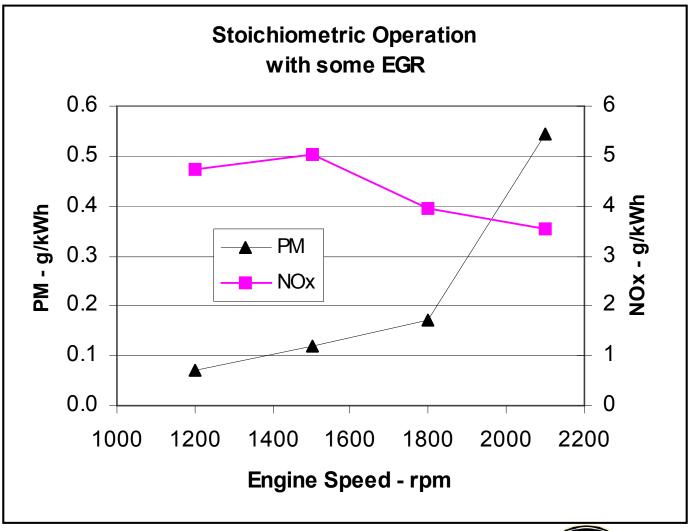
Combustion System	% EGR	φ	Major Issues
Massive EGR	40 - 50	0.8	power & PM
Extreme EGR	60 - 70	0.9	power & efficiency
HCCI	45 - 55	0.9	power & control
PPCI	40 - 50	0.8	control and PM
SCI	0 - 20	1.0	control, NOx & PM


Advantages of SCI Concept

- Little or no EGR
- High power capability with moderate cylinder pressure
- Low air and exhaust flows
- Low turbocharger boost requirements
- Rapid combustion near TDC for good fuel economy
- Easy starting and reliable combustion
- Relatively simple and reliable exhaust aftertreatment

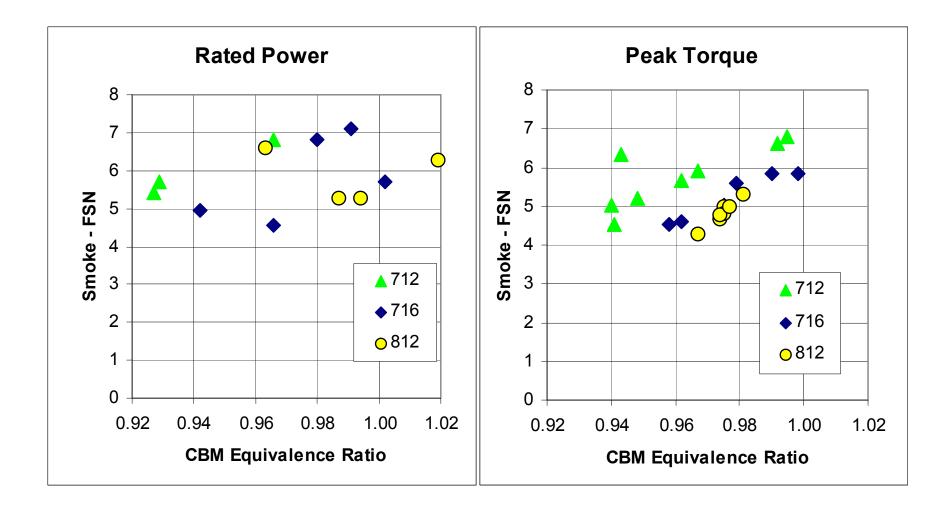
Base Engine – John Deere 6090

9L six-cylinder 242 kW @ 2100 rpm 1530 N-m @ 1575 rpm 118.4 x 136 mm bore x stroke Four-valve head with pushrods Vertical central common rail injector Single-piece steel piston Variable geometry turbocharger Air-to-air intercooled HPL cooled EGR John Deere ECU Off-highway Tier 3 compliant

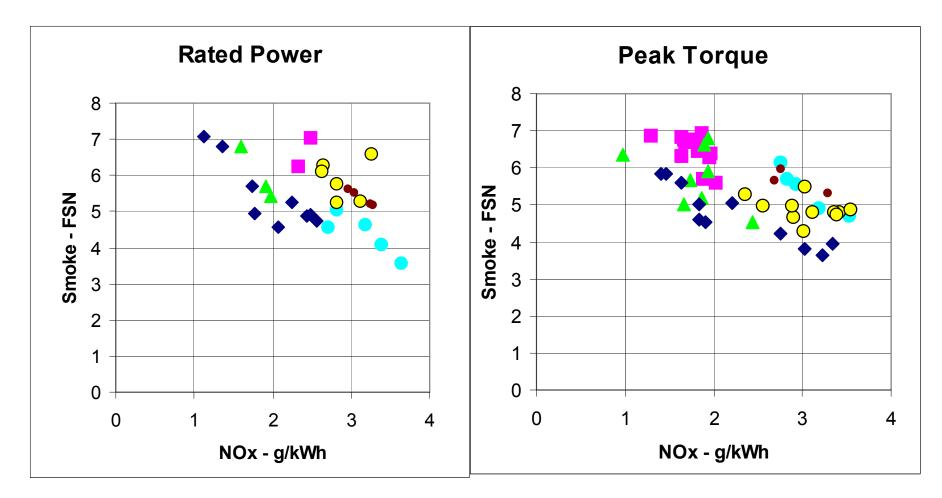


Development Status

- Operated at stoichiometric at half and full load
- Smoke and PM need improvement
- NOx unclear
- BSFC promising



Promising Early Results at Half Load

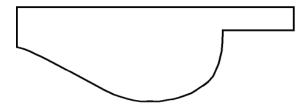


Full Load Smoke Results (~ 20% EGR)

Full Load NOx Results (~ 20% EGR)

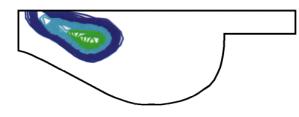
Methods to Reduce Smoke and PM

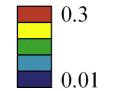
- Combustion system optimization
- Higher injection pressure
- Multiple injection strategy
- Less EGR no EGR
- Higher H/C ratio in fuel
- Oxygenated fuel


BSFC Estimates from Simulation

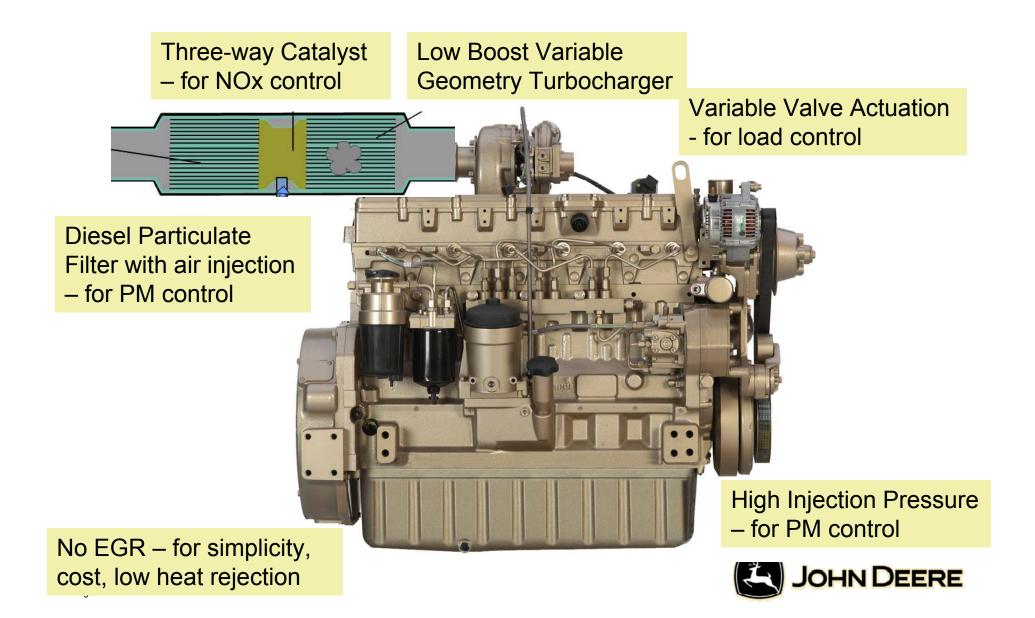
- Simulation was baselined using production engine
- Heat release changed to curve calculated from cylinder pressure data at stoichiometric conditions
- With exhaust aftertreatment and using standard restrictions and efficiencies calculated 41% brake thermal efficiency at rated power and 42% at peak torque
- Air system restrictions and efficiencies are being reviewed for improvement based on the reduced flows and pressure ratios
- Camshaft is being optimized for the operating conditions
- Combustion is being improved by better mixing

CFD to Improve Combustion System


Temperature $--15^{\circ}$



Studying Injection, Piston Bowl, and Mixing


Mixture Fraction – -15°

Likely SCI Engine Configuration

Next Development Activities

- Demonstrate acceptable engine-out smoke and PM
- Refine fuel consumption estimates
- Develop F/A ratio control for three-way catalyst
- Install VVA system for load control in conjunction with VTG
- Consider higher power for better brake efficiency (thermal loading issues)

Acknowledgements

- John Fairbanks DOE Technology Development Manager
- Ralph Nine DOE Project Manager
- Ricardo Inc. for air system simulations using WAVE
- Prof. John Abraham (Purdue University) for CFD of combustion system
- Sturman Industries for advanced injection system

