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OVERVIEW

Timeline

• Project start date: April 2004
• Project end date: May 2010
• 75 % complete

Budget

• Total project funding
- DOE: $871K

• Funding for FY08
- $165K

• Funding for FY09
- $260K 

Barriers

• Barriers 
- Cost
- Cycle life
- Energy and power densities

• Targets
- Acceptable cycle life for spinel   
cathodes

- Low manufacturing cost for 
olivine cathodes

- Increased energy and power  
densities with spinel cathodes



OBJECTIVES

• To develop high performance cathodes for lithium ion 
batteries and a fundamental understanding of their structure-
composition-performance relationships

- To develop low cost spinel manganese oxide compositions exhibiting 
improved capacity retention at elevated temperatures

- To develop spinel-layered oxide composite cathodes offering a 
combination of high power and energy

- To develop low cost manufacturing processes for olivine cathodes with 
controlled size and nanomorphologies



MILESTONES

Month/Year Milestone

March 2008 Optimization of the 4 V spinel to layered oxide ratios and 
microstructures in the spinel-layered oxide composite cathodes

September 2008 Optimization and surface modification of the 5 V spinel cathodes 
based on LiMn1.5Ni0.5O4 

March 2009 Rapid synthesis and characterization of various phospho-olivines with 
controlled size and nanomorphologies

June 2009 Optimization of stabilized spinel-layered oxide composite cathodes

September 2009 New cathode materials based on polyanions



APPROACH

• Develop a firm understanding of the factors controlling the 
electrochemical performances of cathode materials and utilize   
the understanding to develop high performance cathodes

- Cationic and anionic substitutions in 4 V spinel cathodes
- Cationic substitutions in 5 V spinel cathodes
- Surface modifications of 5 V spinel cathodes
- Composites consisting of high power spinel & high energy layered oxides
- Olivine cathodes with controlled particle size & unique nanomorphologies

- Solid state and solution-based synthesis approaches
- Advanced chemical and structural characterizations
- In-depth electrochemical evaluation including impedance analysis
- Understanding of the structure-property-performance relationships



STABILIZED HIGH POWER 4 V SPINEL CATHODES
High temperature cyclability
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Rate capability

• Stabilized spinels with optimized cationic and anionic substitutions offer superior 
capacity retention at elevated temperatures with high rate capability



• Surface modifying Al2O3, ZnO, and Bi2O3 layers are continuous on the layered oxide 
• Surface modifying AlPO4 layer is crystalline, but not continuous

SURFACE MODIFIED, STABILIZED 5 V SPINEL CATHODES
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RATE CAPABILITY RETENTION OF 5 V SPINEL CATHODES
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After 50 cycles
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• Surface modification improves the rate 
capability and rate capability retention 
due to the suppression of thick SEI layer 
formation

- Bi2O3 coating gives the best rate 
capability

- Al2O3 coating gives the best rate 
capability retention



SURFACE (XPS) CHARACTERIZATION OF 5 V SPINELS

• LiAlO2 formed on Al2O3 coated 
sample surface during sintering

• Bi formed on Bi2O3 coated 
sample surface during cycling

• Formation of Li+-conducting 
LiAlO2 and metallic Bi 
improves rate capability
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(d) ZnO coated LiMn1.42Ni0.42Co0.16O4 
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COMPARISON OF THE POLARIZATION RESISTANCE, RP
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• Rp values are obtained from the slope of the 
voltage vs current curves after 3 and 50 cycles

RP = Rohm + Rct + Rdiff

- Bi2O3 coating shows the smallest Rp, resulting   
in the best rate capability

- Al2O3 coating shows the smallest ΔRp,  
resulting in the best rate capability retention



• Al2O3 is the most effective and AlPO4 is the least effective in preventing the growth 
of SEI layer as revealed by the XPS analysis of LiF concentration at various depths 

• XPS data are consistent with the ΔRs values
• The differences in Rp and ΔRp are due to the differences in Rct and ΔRct, and ΔRct
originates from ΔRs

DEPTH PROFILE ANALYSIS OF SEI LAYER ON 5 V SPINEL
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RAPID SYNTHESIS OF OLIVINE LiMPO4 (M = Mn, Fe, Co, Ni)

• Microwave-assisted solvothermal (MW-ST) process to produce LiMPO4 (M = Mn, Fe, 
Co, Ni) within a short reaction time of 5 – 15 minutes at < 300 oC, followed by 
ambient-temperature networking with multi-walled carbon nanotubes (MWCNT)



XRD PATTERNS OF OLIVINE LiMPO4 (M = Mn, Fe, Co, Ni)

• Highly crystalline, phase pure LiMPO4 (M = Mn, Fe, Co, Ni) are formed by the MW-
ST method without requiring any post heat treatment  in reducing gas atmospheres 

• The lattice parameters and unit cell volume decrease as we go from M = Mn to Ni in 
LiMPO4 due to the decreasing ionic radius of the M2+ ions

Table : Crystallographic Unit cell Parameters of 
LiMPO4 

Compound

LiMnPO4

LiFePO4

LiCoPO4

LiNiPO4

a (Å)

10.446

10.321

10.216

10.047

b (Å)

6.106

6.000

5.923

5.862

c (Å)

4.746

4.695

4.704

4.681

V, (Å)

302.71

290.74

284.64

275.69



TEM  IMAGES OF LiMPO4 (M = Mn, Fe, Co, Ni)

The orthorhombic olivine structure of   
LiFePO4 projected onto the (010) plane 

• Single crystalline LiMPO4 (M = Mn, Fe, Co, Ni) with nanothumb-like shapes are 
formed by the microwave-solvothermal method

• The LiMPO4 nanocrystals exhibit a preferential growth along the [001] direction with 
the easy lithium diffusion direction (b axis) perpendicular to the long axis 



ELECTROCHEMICAL PERFORMANCES OF LiMPO4-MWCNT

• Nano networking with MWCNT increases the rate capability due to the 
enhancement in electronic conductivity

• Performances of LiMnPO4 and LiCoPO4 are inferior compared to that of LiFePO4
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(c)
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RAPID SYNTHESIS OF LiFePO4 /C  NANOCOMPOSITES
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SEM AND TEM IMAGES OF LiFePO4/C NANOCOMPOSITES

• MW-HT method gives larger particle size than the MW-ST method
• The easy lithium diffusion direction (b axis) is perpendicular to the long axis, 
providing an advantage to enhance lithium diffusion and rate capability

MW-HT

MW-ST MW-ST

MW-HT



ELECTROCHEMICAL PERFORMANCES OF LiFePO4/C

• Carbon coating improves rate capability due to enhanced electronic conductivity
• MW-ST sample shows higher rate capability due to smaller particle size

MW-ST (ex-situ carbon coating) MW-HT (in-situ carbon coating)



FUTURE WORK

• Continue on the optimization of 4 V and 5 V spinel cathodes by cationic and 
anionic substitutions and surface modifications

• Investigate the electrochemical performances of composites consisting of a high 
power stabilized spinel and a high energy layered oxide

• Understand the role and effectiveness of various surface coatings in controlling the 
growth of undesired SEI layer on high voltage (> 4.5 V) cathodes by employing 
various characterization techniques (XPS, FTIR, Raman, & impedance analysis)

• Understand the influence of crystallite size/shape and defect chemistry on the 
charge-discharge mechanisms of olivine LiMPO4 by making use of the novel 
microwave-solvothermal (MW-ST) and microwave-hydrothermal (MW-HT) methods

• Synthesize solid solutions between various olivine LiMPO4 (M = Mn, Fe, Co, and 
Ni) by MW-ST and MW-HT approaches and understand their structure-
composition-performance relationships

• Synthesize and characterize new cathode compositions containing polyanions, 
employing the microwave-assisted processes



SUMMARY

• Stabilized spinel compositions with appropriate cationic and anionic substitutions 
exhibit superior cyclability compared to the conventional spinel cathode

• Surface modified 5 V spinel cathodes exhibit better cyclability, rate capability, and 
rate capability retention due to the suppression of SEI layer growth during cycling 
and lower polarization and charge transfer resistances

• Microwave-assisted solvothermal and hydrothermal approaches give olivine 
cathodes in 5 – 15 minutes at < 300 oC without requiring any reducing gas 
atmospheres, offering the potential to lower the manufacturing cost

• Building on the fundamental understanding gained, the future work will continue 
focusing on developing high performance cathode compositions

• IP developed through the BATT program has led to the founding of a startup 
(ActaCell) in Austin, TX




