

Spray Combustion Cross-Cut Engine Research

Lyle M. Pickett

Sandia National Laboratories

FY 2013 DOE Vehicle Technologies Program Annual Merit Review Project ACE005, 10:00 – 10:30 AM, Tuesday, May 14, 2013

Sponsor: Program Manager:

DOE Vehicle Technologies Program Gurpreet Singh

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Project provides fundamental research that supports DOE/ industry advanced engine development projects.
- Project directions and continuation are evaluated annually.

Budget

 Project funded by DOE/VT: FY12 - \$730K
 FY13 - \$700K

Barriers

- Engine efficiency and emissions
- Understanding direct-injection sprays
- CFD model improvement for engine design/optimization

Partners

- 15 Industry partners in MOU: Advanced Engine Combustion
- Engine Combustion Network
 - >10 experimental + 16 modeling
 - >100 participants attend ECN2
- Project lead: Sandia
 - Lyle Pickett (PI)

The role of spray combustion research for highefficiency engines.

- Future high-efficiency engines use direct injection.
 - Diesel, gasoline direct injection, partiallypremixed compression ignition
- Complex interactions between sprays, mixing, and chemistry.
 - Two-phase system, including multiple injections
 - Spray-induced mixture preparation
 - Complicated internal flows within injectors
- Optimum engine designs discovered only when spray modeling becomes predictive.
 - Predictive modeling shortens development time and lowers development cost.
 - Makes efficient engines more affordable.
- Relevant to EERE Advanced Combustion Engine research and development goals.

Schlieren: vapor boundary BLUE: liquid boundary

Experimental approach utilizes well-controlled conditions in constant-volume chamber.

- Well-defined ambient conditions:
 - 300 to 1300 K
 - up to 350 bar
 - 0-21% O₂ (EGR)
- Injector
 - single- or multi-hole injectors
 - diesel or gasoline (cross-cut)
- Full optical access
 - 100 mm on a side
- Boundary condition control needed for CFD model development and validation.
 - Better control than an engine.
 - Easier to grid.

Objectives/Milestones

- Aid the development of computational models for engine design and optimization (ongoing).
 - Lead an experimental and modeling collaboration through the Engine Combustion Network with >100 participants (http://www.sandia.gov/ECN)
 - Target conditions specific to low-temperature diesel and DI gasoline.
 > ECN activities focus on quantification, standardization, leveraging, detailed analysis.
 > Provides a pathway from experimental results to more predictive CFD modeling.
 > Activities, progress, and future directions listed under ECN2 Workshop proceedings.
 > Represents major advances in terms of diagnostics, modeling tools, and so forth.
- (1) Expand datasets to a larger range of conditions for more extensive model evaluation, including
- (2) Apply quantitative soot diagnostics in optically thick diesel sprays, providing opportunity for needed improvement in PM predictions.
- (3) Evaluate liquid/vapor penetration and plume-plume interactions in DI gasoline sprays, forming unique model-target dataset.

ECN collaborative research at specific target conditions

- Opportunity for the greatest exchange and deepest collaboration.
 - Understanding facilities/boundary conditions.
 - Understanding diagnostics and quantification.
 - Standardize methodologies for post-processing.
- Leverages the development of quantitative, complete datasets.
 - Unique diagnostics to build upon past understanding.
 - Moves from "qualitative" to "quantitative".
 - Sharing results/meshes/code/methods saves time and effort.
- Methodology now applied to parametric variants about Spray A.

Measurements to date at Spray A conditions

	Quantity	Experiment	Contributors (Inst. and/or person)
	Gas T distribution	fine-wire TC, variable diameter TC	CAT [®] , CMT, Sandia, IFPEN, TU/e, KAIST, Chalmers
	Nozzle internal temperature	thermocouple	Sandia, CAT, IFPEN, CMT, TU/e, Aachen, Chalmers
	Nozzle surface temperature	laser-induced phosphorescence	IFPEN (Louis-Marie Malbec, Gilles Bruneaux)
	Nozzle geometry	x-ray tomography	CAT (Tim Bazyn), Infineum (Peter Hutchins)
	Needle movement/noz. geom.	phase-contrast imaging	Argonne (Alan Kastengren, Chris Powell)
	Nozzle geometry	silicone molds	CMT (Raul Payri, Julien Manin)
26 types of	Nozzle exit shape	optical microscopy, SEM	Sandia (Julien Manin, Lyle Pickett), TU/e
	Mass rate of injection	bosch tube method	CMT, KAIST
experiments	Rate of momentum	force piezo	CMT, Sandia, CAT
	Total mass injected	gravimetric scale	CMT, Sandia, IFPEN
	Nozzle Cd, Ca	momentum + mass	CMT, Sandia
	Liquid penetration	Mie scatter	IFPEN, Sandia, CMT, CAT, TU/e
	Liquid penetration	Diffused back illumination (DBI)	Sandia, CMT, IFPEN, TU/e
ru amereni	Liquid optical thickness	laser extinction	Sandia (Julien Manin, Lyle Pickett)
international	Liquid structure	long-distance microscopy	Sandia, CMT (Julien Manin, Lyle Pickett)
	Liquid vol. fraction (300 K)	x-ray radiography extinction	Argonne (Alan Kastengren, Chris Powell)
institutions	Vapor boundary/penetration	schlieren / shadowgraphy	Sandia, IFPEN, CAT, CMT, TU/e
	Fuel mixture/mass fraction	Rayleigh scattering	Sandia
	Velocity (gas-phase)	PIV	IFPEN (LM. Malbec, G. Bruneaux, M. Meijer)
	Ignition delay	high-speed chemiluminescence	Sandia, CAT, CMT, IFPEN, TU/e
	Lift-off length	OH or broadband chemilum.	Sandia, IFPEN, CAT, CMT, TU/e
	Transient lift-off/ignition	intensified OH chemiluminescence	Sandia, IFPEN, CAT, CMT, TU/e
	Pressure rise/AHRR	high-speed pressure	Sandia, IFPEN, TU/e
	Soot luminosity/Radiation	high-speed luminosity imaging	Sandia, IFPEN, CAT, CMT, TU/e, DTU
Past	Soot volume fraction	laser-induced incandescence, laser extinction, DBI	IFPEN/Duisberg-Essen, Sandia (Scott Skeen)

Past **FY13**

Workshops organized with voluntary participation (for ECN2: 8 experimental, 16 modeling teams)

Organizers facilitate side-by-side comparison and analysis to provide an expert review of the current state of the art for diagnostics and engine modeling:

- ECN2 overall organization:
 - Gilles Bruneaux (IFPEN), Lyle Pickett (Sandia)
- Internal Nozzle Flow
 - Chris Powell (Argonne), David Schmidt (UMassAmherst), Marco Arienti (Sandia)
- Spray Development and Vaporization
 - Julien Manin (Sandia) , Sibendu Som (Argonne), Chawki Habchi (IFPEN)
- Mixing and Velocity
 - Louis-Marie Malbec (IFPEN), Gianluca D'Errico (Pol. Milano)

- Ignition and Lift-off Length
 - Michele Bardi (CMT), Evatt Hawkes (UNSW), Christian Angelberger (IFPEN)
- Soot
 - Emre Cenker (Duisburg/IFPEN), Dan Haworth (Penn St.)
- Gasoline Sprays
 - Scott Parrish (GM)
- Engine Flows
 - Sebastian Kaiser (Duisburg-Essen)

Ignition and lift-off length measurements are consistent for different types of HP-HT facilities.

IFPEn

CMT

- Lift-off length predictions better than ignition delay.
- Predictions better for n-heptane than n-dodecane.
- Serious questions remain about the chemical mechanisms and combustion models.
 - More advanced combustion models (pdf) show improvements for one set of data, but not others.
 - Errors of 20-40% could easily translate to sooting vs non-sooting sprays.

Side by side analysis reveals differences in models, and points to the need for further experiments.

- Lift-off length:
 - Expt: 17.5 mm
 - ANL: 22.8 mm
 - Purdue: 20.3 mm
 - Tue: 18.1 mm
 - UNSW m0: 27.0 mm
 - UNSW m1: 16.8 mm
- Similar lift-off length but very different OH profiles.
- ECN experimental participants plan to perform planar OH measurements.

Soot level is quantified within reacting sprays

- Soot mitigation stands as a major barrier to efficiency.
- Soot modeling is far from predictive.
- We developed a new technique to quantify soot concentration based on high-speed extinction imaging.
- Applied to variants of the Spray A condition.
 - Ambient temperature
 - Ambient density
 - Ambient oxygen (EGR level)
- Measurements also address soot size and soot precursors.
- Dataset is now available for detailed soot model development.
 - Target for future ECN modeling.

Diffused back illumination (DBI) highspeed imaging technique developed by Scott Skeen and Julien Manin, Sandia

DI gasoline sprays have special modeling challenges

- Feedback from last AMR:
 - "extend the work to direct-injection gasoline"
 - "greatly accelerate gasoline injection diagnostics"
- Efficiency gains met with DI gasoline, but challenges exist:
 - Wall wetting, early DI (stoichiometric), late DI (fuel-lean), spray-guided ignition, knock mitigation, particulate matter, coking, spark-assist HCCI, HCCI, etc.
- Specific challenges:
 - Plume-to-plume interaction, flash boiling, flow-field spray interactions, ignition in stratified or high-pressure environment
 - Stochastic variability in these processes—do these originate from the spray (injector) or something else?
- Approach:
 - Eliminating the complexity of an engine by injecting in our quiescent constant-volume vessel
 - Address individual plume, and global spray, liquid and vapor
 - Quantify mixtures (equivalence ratios) along a plane for detailed CFD evaluation

Backpressure (kPa)

EXAMPLE Liquid and vapor visualization of multi-hole DI injector

COMBUSTION RESEARCH FACILITY

Plume pointing vector (in 3D) with liquid and vapor penetration

- 3D penetration is relatively close for the 8 plumes (less than 10 % max. deviation)
 - Plume-plume variation at EOI
- Ethanol vs. iso-octane:
 - Similar vapor penetration.
 - Longer liquid penetration for ethanol.
 - Longer time after EOI for vaporization.

Understanding the causes of attracting/merging plumes is critical for DI gasoline spray modeling.

Injection-to-injection variability in vapor penetration is a potential cause for irregular combustion.

- Contour plots showing the probability for the presence of vapor (schlieren) from repeated injections.
 - <10 mm variation</p>
 - along line of sight!
- The region between plumes is probed using a planar diagnostic:
 - Rayleigh scattering

Planar mixing (equivalence ratio) measurements quantify plume interaction after EOI.

Future work

- Develop "Spray A" philosophy and dataset for ECN DI gasoline injector set.
 - Delphi has donated 12 gasoline injectors for future ECN research.
 - Apply similar diagnostics and tools presented today.
 - Coordinate research worldwide.
- Extend research to Spray B, 3-hole injectors with the same specification as Spray A.
- Use large-nozzle injectors (0.2 mm diameter) to create interaction between liquid regions and combustion regions of the spray, and to significantly change stoichiometry.
 - Spray A variants typically have lift-off downstream of liquid length.
 - ECN measurements show variation in near-nozzle spray, but less impact/variation on ignition and lift-off length.
- Quantify soot precursors near first soot and total soot radiation downstream.
- Quantify the minor species that exist in preburn environments, along with their impact on ignition and combustion.

Presentation Summary

- Project is relevant to the development of high-efficiency, low-emission engines.
 - Observations of combustion in controlled environment lead to improved understanding/models for engine development.
- FY13 approach addresses deficiencies in spray combustion modeling.
 - Understanding of plume interaction and mixing effects developed for gasoline DI injectors, including planar, quantitative measurements for model evaluation.
 - Massive Spray A dataset expanded significantly, outlining clear needs for future model improvement with respect to ignition delay and lift-off length.
 - New DBI technique provides quantitative soot measurements in optically thick sprays.
 - Enhanced knowledge about injector startup (vapor injection) as a modeling boundary condition.
- Collaboration expanded to accelerate research and provide greatest impact (MOU, leading Engine Combustion Network).
- Future plans will continue ECN-type diesel and gasoline research.

Acknowledging FY13 staff and visitors performing spray combustion research at Sandia

- Scott Skeen, Sandia National Laboratories
- Julien Manin, Sandia National Laboratories
- Maarten Meijer, Technical University of Eindhoven
- Matt Blessinger, University of Wisconsin-Madison
- Kristine Dalen, Technical University of Denmark

Technical Backup Slides

Dual high-speed imaging system for vapor and liquid

RE

February, 5th 2013

Microscopic high-speed imaging setup

- 50 mm objective replaced by a long-distance microscope lens (mag.≈ 4x)
- Field of view slightly longer than 1 mm (4 μm/pixel)
- Still and high-speed imaging to record the event and follow the features

- 150 kHz normal operation (up to 400 kHz)
- LED operated in burst mode producing more than 5 times the CW output luminosity
- 50 ns LED pulse duration to freeze the flow (exiting at more than 500 m/s)

Diffused Back Illumination for quantification of soot

RF.

CRE Mixing measurements via Rayleigh scattering

- Rayleigh scattering has been employed to measure the concentration of fuel in the vaporized spray
- A Nd:YAG laser generates a 30 mm wide laser sheet placed between the plumes around the axis of the injector

Nd:YAG laser 532 nm 30 mm wide sheet 150 mJ per pulse

- Specific fused silica window slits on the laser path to optically "seal" the vessel and reduce stress-induced birefringence
- A high quantum efficiency back-illuminated CCD has been used to acquire highsensitivity/low noise Rayleigh signal
- High resolution images with pixel size of less than 70 µm (≈70 mm field of view)

Calibration of equivalence ratio (Rayleigh)

- The relationship between recorded intensity and number density is drawn assuming adiabatic mixing of the species $\frac{I_{R,mix}}{I_{R,amb}} = \left(\frac{\sigma_{fuel}/\sigma_{amb} + N_{amb}/N_{fuel}}{1 + N_{amb}/N_{fuel}}\right) \frac{T_{amb}}{T_{mix}}$
- Ambient temperature and species are known, Rayleigh cross-sections are also known for all the species: σ_{fuel} = 397 x 10⁻²⁷ cm²
- Process steps (summary):
 - Select spray boundaries
 - Reconstruct "jet-free" laser sheet intensity (beam steering)
 - Ratio intensities
- This process is self-calibrated as both signal intensities (ambient and spray) are used
- Beam steering is well corrected thanks to the linear gradient reconstruction of the laser sheet

Sandia National Laboratories

COMBUSTION RESEARCH FACILITY

February, 5th 2013

27/26

Rayleigh Scattering: axial profile

x (spray) axis [mm]

0.85

Boundary layer near injector will influence spray properties.

• Possibility to calibrate the Rayleigh data via direct TC measurement

