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Overview 

● Project provides fundamental 
research that supports DOE/ 
industry advanced engine 
development projects. 

● Project directions and 
continuation are evaluated 
annually.  

● 15 Industry partners in MOU: 
Advanced Engine Combustion 

● Engine Combustion Network 
– >10 experimental + 16 modeling 
– >100 participants attend ECN2 

● Project lead: Sandia  
– Lyle Pickett (PI) 

 

● Project funded by DOE/VT: 
FY12 - $730K 
FY13 - $700K 

 

Timeline 

Budget 

Barriers 

Partners 

● Engine efficiency and emissions 

● Understanding direct-injection 
sprays 

● CFD model improvement for 
engine design/optimization 
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The role of spray combustion research for high-
efficiency engines. 

● Future high-efficiency engines use direct 
injection. 
– Diesel, gasoline direct injection, partially-

premixed compression ignition 
● Complex interactions between sprays, mixing, 

and chemistry. 
– Two-phase system, including multiple injections 
– Spray-induced mixture preparation 
– Complicated internal flows within injectors 

● Optimum engine designs discovered only 
when spray modeling becomes predictive. 
– Predictive modeling shortens development time 

and lowers development cost. 
– Makes efficient engines more affordable. 

● Relevant to EERE Advanced Combustion 
Engine research and development goals. 
 

BLUE: liquid boundary 
Schlieren: vapor boundary 
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Experimental approach utilizes well-controlled 
conditions in constant-volume chamber. 

● Well-defined ambient conditions: 
– 300 to 1300 K 
– up to 350 bar 
– 0-21% O2 (EGR) 

● Injector 
– single- or multi-hole injectors 
– diesel or gasoline (cross-cut) 

● Full optical access 
– 100 mm on a side 

● Boundary condition control needed 
for CFD model development and 
validation. 
– Better control than an engine. 
– Easier to grid. 
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Objectives/Milestones 

● Aid the development of computational models for engine design and 
optimization (ongoing). 
– Lead an experimental and modeling collaboration through the Engine 

Combustion Network with >100 participants (http://www.sandia.gov/ECN) 
– Target conditions specific to low-temperature diesel and DI gasoline.  

> ECN activities focus on quantification, standardization, leveraging, detailed analysis. 
> Provides a pathway from experimental results to more predictive CFD modeling.  
> Activities, progress, and future directions listed under ECN2 Workshop proceedings. 
> Represents major advances in terms of diagnostics, modeling tools, and so forth. 

● (1) Expand datasets to a larger range of conditions for more extensive 
model evaluation, including  

● (2) Apply quantitative soot diagnostics in optically thick diesel sprays, 
providing opportunity for needed improvement in PM predictions. 

● (3) Evaluate liquid/vapor penetration and plume-plume interactions in DI 
gasoline sprays, forming unique model-target dataset. 
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ECN collaborative research at specific target conditions 

● Opportunity for the greatest exchange and deepest collaboration. 
– Understanding facilities/boundary conditions. 
– Understanding diagnostics and quantification. 
– Standardize methodologies for post-processing. 

● Leverages the development of quantitative, complete datasets. 
– Unique diagnostics to build upon past understanding. 
– Moves from “qualitative” to “quantitative”. 
– Sharing results/meshes/code/methods saves time and effort. 

● Methodology now applied to parametric variants about Spray A. 
 

900 K, 60 bar 90° C, 1500 bar 
Spray A Injector Ambient 

Internal nozzle 
geometry 

• Spray H (baseline n-
heptane) 

• Spray B (3-hole 
version of Spray A).  

• Gasoline DI and 
engine flows. 

Other defined targets: 



Measurements to date at Spray A conditions 

26 types of 
experiments 

10 different 
international 
institutions 

Quantity Experiment Contributors (Inst. and/or person) 

Gas T distribution fine-wire TC, variable diameter TC CAT®, CMT, Sandia, IFPEN, TU/e, KAIST, Chalmers 
Nozzle internal temperature thermocouple Sandia, CAT, IFPEN, CMT, TU/e, Aachen, Chalmers 

Nozzle surface temperature laser-induced phosphorescence IFPEN (Louis-Marie Malbec, Gilles Bruneaux) 
Nozzle geometry x-ray tomography CAT (Tim Bazyn), Infineum (Peter Hutchins) 
Needle movement/noz. geom. phase-contrast imaging Argonne (Alan Kastengren, Chris Powell) 
Nozzle geometry silicone molds CMT (Raul Payri, Julien Manin) 
Nozzle exit shape optical microscopy, SEM Sandia (Julien Manin, Lyle Pickett), TU/e 
Mass rate of injection bosch tube method CMT, KAIST 
Rate of momentum force piezo CMT, Sandia, CAT 
Total mass injected gravimetric scale CMT, Sandia, IFPEN  
Nozzle Cd, Ca momentum + mass CMT, Sandia 
Liquid penetration Mie scatter IFPEN, Sandia, CMT, CAT, TU/e 
Liquid penetration Diffused back illumination (DBI) Sandia, CMT, IFPEN, TU/e 
Liquid optical thickness laser extinction Sandia (Julien Manin, Lyle Pickett) 
Liquid structure long-distance microscopy Sandia, CMT (Julien Manin, Lyle Pickett) 
Liquid vol. fraction (300 K) x-ray radiography extinction Argonne (Alan Kastengren, Chris Powell) 

Vapor boundary/penetration schlieren / shadowgraphy Sandia, IFPEN, CAT, CMT, TU/e 
Fuel mixture/mass fraction Rayleigh scattering Sandia 
Velocity (gas-phase) PIV IFPEN (L.-M. Malbec, G. Bruneaux, M. Meijer) 
Ignition delay high-speed chemiluminescence Sandia, CAT, CMT, IFPEN, TU/e 
Lift-off length OH or broadband chemilum. Sandia, IFPEN, CAT, CMT, TU/e 
Transient lift-off/ignition intensified OH chemiluminescence Sandia, IFPEN, CAT, CMT, TU/e 
Pressure rise/AHRR high-speed pressure Sandia, IFPEN, TU/e  
Soot luminosity/Radiation high-speed luminosity imaging Sandia, IFPEN, CAT, CMT, TU/e, DTU 

Soot volume fraction 
laser-induced incandescence, laser 
extinction, DBI IFPEN/Duisberg-Essen, Sandia (Scott Skeen)  Past 
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Website visits/month ECN1 
53 participants 

Workshops organized with voluntary participation  
(for ECN2: 8 experimental, 16 modeling teams)  

● Ignition and Lift-off Length  
– Michele Bardi (CMT), Evatt Hawkes (UNSW), 

Christian Angelberger (IFPEN) 

● Soot  
– Emre Cenker (Duisburg/IFPEN),      

Dan Haworth (Penn St.) 

● Gasoline Sprays 
– Scott Parrish (GM)  

● Engine Flows 
– Sebastian Kaiser (Duisburg-Essen)  

● ECN2 overall organization:  
– Gilles Bruneaux (IFPEN), Lyle Pickett (Sandia) 

● Internal Nozzle Flow  
– Chris Powell (Argonne), David Schmidt 

(UMassAmherst), Marco Arienti (Sandia) 

● Spray Development and Vaporization  
– Julien Manin (Sandia) , Sibendu Som (Argonne), 

Chawki Habchi (IFPEN) 

● Mixing and Velocity   
– Louis-Marie Malbec (IFPEN), Gianluca D’Errico (Pol. 

Milano)  

ECN2 
104 participants 

Organizers facilitate side-by-side comparison and analysis to provide an expert 
review of the current state of the art for diagnostics and engine modeling: 

  



Ignition and lift-off length measurements are consistent for 
different types of HP-HT facilities. 

The facilities 

IFPEn TU/e CMT SNL 



  Error for Ta variations ECN2 parametric variations show modeling 
improvement, but no superior combustion model. 

● Difficult to achieve predictive ignition delay and lift-off length. 
– Lift-off length predictions better than ignition delay. 
– Predictions better for n-heptane than n-dodecane. 

● Serious questions remain about the chemical mechanisms and combustion models. 
– More advanced combustion models (pdf) show improvements for one set of data, but not others. 
– Errors of 20-40% could easily translate to sooting vs non-sooting sprays. 

 

Well-mixed 

pdf 

Well-mixed 

pdf 

No ignition at 900 K 
at ECN1 ! 



   OH radial profiles 

Spray A 
X=20mm 

Spray A 
X=45mm 

Side by side analysis reveals differences in models, 
and points to the need for further experiments.   

● Lift-off length: 
– Expt: 17.5 mm 
– ANL: 22.8 mm 
– Purdue: 20.3 mm 
– Tue:  18.1 mm 
– UNSW m0: 27.0 mm 
– UNSW m1: 16.8 mm 
 

● Similar lift-off length but very different 
OH profiles. 

● ECN experimental participants plan to 
perform planar OH measurements. 
 



Soot level is quantified within reacting sprays 

● Soot mitigation stands as a major 
barrier to efficiency. 

● Soot modeling is far from predictive. 
● We developed a new technique to 

quantify soot concentration based 
on high-speed extinction imaging. 

● Applied to variants of the Spray A 
condition. 
– Ambient temperature 
– Ambient density 
– Ambient oxygen (EGR level) 

● Measurements also address soot 
size and soot precursors. 

● Dataset is now available for 
detailed soot model development. 
– Target for future ECN modeling.  
 
 

Diffused back illumination (DBI) high-
speed imaging technique developed by 
Scott Skeen and Julien Manin, Sandia 



DI gasoline sprays have special modeling challenges 

● Feedback from last AMR: 
– “extend the work to direct-injection gasoline” 
– “greatly accelerate gasoline injection diagnostics”  

● Efficiency gains met with DI gasoline, but challenges exist: 
– Wall wetting, early DI (stoichiometric), late DI (fuel-lean), 

spray-guided ignition, knock mitigation, particulate matter, 
coking, spark-assist HCCI, HCCI, etc. 

● Specific challenges: 
– Plume-to-plume interaction, flash boiling, flow-field spray 

interactions, ignition in stratified or high-pressure environment  
– Stochastic variability in these processes—do these originate 

from the spray (injector) or something else? 
● Approach:  

– Eliminating the complexity of an engine by injecting in our 
quiescent constant-volume vessel 

– Address individual plume, and global spray, liquid and vapor 
– Quantify mixtures (equivalence ratios) along a plane for 

detailed CFD evaluation 
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Liquid and vapor visualization of multi-hole DI injector 

Mie-scatter (Front) Mie-scatter (Side) Schlieren (Side) 

Valve-covered orifice with counterbore 
Ambient Conditions:  
Temperature 700 K 
Pressure  12.3 bar 
Density  6 kg/m3 

Oxygen (by volume) 0% O2 
Injector Conditions: 
Fuel  Iso-octane 
Pressure  200 bar 







Injection-to-injection variability in vapor penetration 
is a potential cause for irregular combustion. 

● Contour plots showing the probability 
for the presence of vapor (schlieren) 
from repeated injections.   
– <10 mm variation 
– along line of sight! 

● The region between plumes is probed 
using a planar diagnostic:  
– Rayleigh scattering 
 

10% 
90% 

Laser sheet 

Probability contours 





Future work 

● Develop “Spray A” philosophy and dataset for ECN DI 
gasoline injector set. 
– Delphi has donated 12 gasoline injectors for future ECN research. 
– Apply similar diagnostics and tools presented today. 
– Coordinate research worldwide. 

● Extend research to Spray B, 3-hole injectors with the same 
specification as Spray A. 
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● Use large-nozzle injectors (0.2 mm diameter) to create interaction between 
liquid regions and combustion regions of the spray, and to significantly 
change stoichiometry. 
– Spray A variants typically have lift-off downstream of liquid length. 
– ECN measurements show variation in near-nozzle spray, but less impact/variation 

on ignition and lift-off length. 
● Quantify soot precursors near first soot and total soot radiation downstream. 
● Quantify the minor species that exist in preburn environments, along with 

their impact on ignition and combustion. 
 
 
 



Presentation Summary 

● Project is relevant to the development of high-efficiency, low-emission 
engines. 
– Observations of combustion in controlled environment lead to improved 

understanding/models for engine development. 
● FY13 approach addresses deficiencies in spray combustion modeling. 

– Understanding of plume interaction and mixing effects developed for gasoline DI 
injectors, including planar, quantitative measurements for model evaluation. 

– Massive Spray A dataset expanded significantly, outlining clear needs for future 
model improvement with respect to ignition delay and lift-off length.  

– New DBI technique provides quantitative soot measurements in optically thick 
sprays. 

– Enhanced knowledge about injector startup (vapor injection) as a modeling 
boundary condition. 

● Collaboration expanded to accelerate research and provide greatest 
impact (MOU, leading Engine Combustion Network). 

● Future plans will continue ECN-type diesel and gasoline research. 
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Acknowledging FY13 staff and visitors 
performing spray combustion research at Sandia  

● Scott Skeen, Sandia National Laboratories 
● Julien Manin, Sandia National Laboratories 
● Maarten Meijer, Technical University of Eindhoven 
● Matt Blessinger, University of Wisconsin-Madison 
● Kristine Dalen,  Technical University of Denmark 
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Technical Backup Slides 
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Dual high-speed imaging system for vapor 
and liquid 

February, 5th 2013 23/26 



Microscopic high-speed imaging setup 

● 50 mm objective replaced by a long-distance microscope lens (mag.≈ 4x) 
● Field of view slightly longer than 1 mm (4 µm/pixel) 
● Still and high-speed imaging to record the event and follow the features 

 
 
 
 
 
 

 

• 150 kHz normal operation (up to 400 kHz)  
• LED operated in burst mode producing more 

than 5 times the CW output luminosity 
• 50 ns LED pulse duration to freeze the flow 

(exiting at more than 500 m/s) 
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Diffused Back Illumination for quantification of soot 
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Mixing measurements via Rayleigh scattering 

• Rayleigh scattering has been employed 
to measure the concentration of fuel in 
the vaporized spray 

• A Nd:YAG laser generates a 30 mm wide 
laser sheet placed between the plumes 
around the axis of the injector 

• Specific fused silica window slits on the 
laser path to optically “seal” the vessel and 
reduce stress-induced birefringence 

• A high quantum efficiency back-illuminated 
CCD has been used to acquire high-
sensitivity/low noise Rayleigh signal 

• High resolution images with pixel size of 
less than 70 µm (≈70 mm field of view) 



Calibration of equivalence ratio (Rayleigh) 

• The relationship between recorded intensity and number density is drawn 
assuming adiabatic mixing of the species 
 

• Ambient temperature and species are known, Rayleigh cross-sections are also 
known for all the species: σfuel = 397 x 10-27 cm2 

 
 

February, 5th 2013 
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• Process steps (summary): 
− Select spray boundaries 
− Reconstruct “jet-free” laser 

sheet intensity (beam steering) 
− Ratio intensities 

• This process is self-calibrated as 
both signal intensities (ambient 
and spray) are used 

• Beam steering is well corrected 
thanks to the linear gradient 
reconstruction of the laser sheet 
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Rayleigh Scattering: axial profile 



Boundary layer near injector will influence spray 
properties.  

● Possibility to calibrate the Rayleigh data via direct TC measurement 

y=0, z=0 
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