In-situ Solvothermal Synthesis of Novel High-Capacity Cathodes

Feng Wang Brookhaven National Laboratory May 16, 2013

ES183

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: April, 2012
- Project end date: April, 2016
- Percent complete: 25%

Budget

- Total project funding
 - DOE 100%
- Funding received in FY12
 \$ 304K
- Funding for FY13
 \$350 K

Barriers

- Low energy density
- Cost
- Cycle life

Partners

- Interactions/collaborations
 - HRL Laboratory
 - Stony Brook University
 - Brookhaven National Lab
 - Lawrence Berkeley National Lab
 - University of Texas at Austin
 - SUNY at Binghamton
 - Cambridge University
- Project lead Brookhaven Nat. Lab.

Objectives

Develop *low-cost* cathode materials with *energy density* >660 *Wh/kg* and electrochemical properties (cycle life, power density, safety) consistent with USABC goals.

Initial effort (FY12/13) was focused on high-energy Cu-V-O cathodes:

- Synthesize Cu_{0.95}V₂O₅ and other Cu-V-O compounds
- Optimize synthesis using *in*situ methods
- Characterize structural and electrochemical properties
- Identify mechanisms that limit cycling stability via *in*operando studies

(*Some cathodes with target energy density are given on the right side of the plot)

Milestones

- Complete design and construction of second-generation capillary reactor capable of accommodating higher pressures and temperatures. (April 12') complete
- Develop a procedure for the synthesis of Cu_{0.95}V₂O₅. (Sep. 12') complete
- Complete preliminary characterization of synthesis reaction(s) of Cu_{0.95}V₂O₅ using the *in situ* capillary reactor. (Sep. 12') complete
- Determine optimal procedure for Cu_{0.95}V₂O₅. synthesis (Jan. 13') complete
- Identify mechanism(s) responsible for poor cycling in Cu_{0.95}V₂O₅ and identify a pathway for reducing capacity fade with cycling. (Mar. 13') on-schedule

Approach

In-situ synthesis Controlled synthesis of phase-pure materials of desirable stoichiometry, morphology

time-resolved XRD

 direct quantitative identification of structure/phases during synthesis

specialized in-situ reactors

- wide-range temperature/pressure
- wide applicability: hydrothermal, solvothermal, ion exchange, and solid-state reactions...

Technique development Explore reaction pathways and

structural evolution of intermediates in real working conditions

- develop ability to 'dial in' desired phases and material properties;
- optimize synthesis conditions;
- provide insight for structure prediction (potential synergy with theory).

Approach (cont'd)

In-situ synthesis, synergy with diagnostics using on-site resources and *in-house* developed capabilities

Optimization of synthesis via in-situ method

 $V_2O_5 + Cu(NO_3)_2 \cdot 3H_2O + reducing-agent \rightarrow Cu_xV_2O_5$

- Determined reaction path and intermediate phases:
 - decoded synthesis reaction mechanisms;
 - developed optimal procedures for synthesis of desired phases.*

(*See backup slides for hydrothermal synthesis of a different phase)

Synthesis and characterization of ϵ -Cu_{0.95}V₂O₅

- Determined structure of ε-Cu_{0.95}V₂O₅ (ε-CVO)
 - high degree of purity and crystallinity
 - rod-like morphology: $1-2 \mu m$ long, $\sim 100 nm$ thick
- Demonstrated excellent electrochemical performance
- high capacity (~300 mAh/g)
- reasonable cycling stability (between 3.6 2 V)
- *but abrupt* change of the voltage profile after 1st cycle

Local structural ordering of ϵ -Cu_{0.95}V₂O₅

- Single-crystalline, surface layer ~5 nm (rock-salt structure);
- Found different structural ordering and stoichiometry than literature*

(*Ref.: Rozier, et al., J. Solid State Chem. 182, 1481, 2009)

Structural change upon lithiation (ε-Cu_{0.95}V₂O₅)

 Found loss of long-range ordering (i.e. periodic V₂O₅ stacking) with Cu extrusion (*disappearing of (003) in Stage II).

Structural degradation with cycling

Direct correlation of structural changes with voltage profile

- "multiple plateaus" in the 1st cycle;
- sloppy curves in the following cycles.
- Structural degradation and residual Cu may explain gradual capacity decay with cycling.*

(*See backup slide showing the residual Cu with cycling)

Redox of V and Cu in ϵ -Cu_{0.95}V₂O₅ (*in-situ* XAS)

Local structural re-ordering(in-situ XAS: EXAFS)

- VO6 octahedra: largely distorted in pristine, little change in early Li insertion
 - become highly symmetric with Cu extrusion/further lithium intercalation*
- Li reaction process: solid solution with Cu^{2+/1+} reduction (I') → displacement (Cu^{1+/0}; II') → further Li intercalation leading to V^{5+/4+/3+} reduction (II, III).

(*See backup slide for reference XAS spectra and V-O bond distances)

Collaborations

- HRL Lab (*J. Graetz**)
 - Synthesis and characterization of high-capacity cathode materials
- Brookhaven National Lab (*J. Bai, Y. Zhu*)
 - Development of *in-situ* reactors and synchrotron techniques;
 - Advanced TEM imaging and spectroscopy of cathodes
- Stony Brook University (*P. Khalifah*, *X. Wang*(shared student))
 - Synthesis of novel high-capacity cathodes
- Lawrence Berkeley National Lab (*J. Cabana**)
 - In-situ synthesis of new mixed-anion cathodes.
- University of Texas at Austin (A. Manthiram*)
 - Synchrotron X-ray characterization of high-capacity polyanion cathodes.
- NECCES EFRC at Stony Brook University
 - In-situ TEM, NMR, magnetization characterization.

* PIs in the BATT program.

Future work in FY13/FY14

- Continue the investigation of Cu-V-O cathodes
 - synthesize and characterize other high-capacity Cu-V-O phases;
 - identify mechanisms responsible for cycling stability of electrodes using newly developed *simultaneous in-situ* XRD/XAS method;
 - improve electrode performance by tailoring particle morphology through the control of reaction conditions (precursor, reducing agent, temperature, time, etc.).
- Develop new high-capacity cathodes
 - prepare and *in-situ* characterize olivine-type cathodes (Li(MnFe)PO₄, $Li_3V_2(PO_4)_3, ...$);
 - determine the feasibility of solvothemral and/or ion exchange synthesis of lithium metal carbonophosphates (Li₃M(CO₃)(PO₄)), carbonofluorosulfates (Li₃M(CO₃)SO₄F);
 - prepare polyanion and other types of lithium materials via ionexchange from earth-abundant Na compounds.
 - Develop new *in-situ* synthesis methods *via* collaboration with BATT community.

Summary

Synthesis Technique Development

- Developed in-situ reactors, time resolved XRD techniques specialized for hydrothermal, solvothermal, ion exchange, solid reaction synthesis*
 - key for understanding synthesis reaction mechanism and thereby optimizing synthesis conditions to obtain desired phases and material properties

High-Capacity Cathodes Development

- Synthesized high-quality ε-Cu_{0.95}V₂O₅ materials after optimization of reaction conditions (precursors, reducing agents, temperature);
- Conducted detailed electrochemical and structural characterization of as-synthesized and (de)lithiated ε-Cu_{0.95}V₂O₅ materials.

Cycling Stability Investigation

- Determined Li reaction process and possible mechanisms responsible for poor cycling stability of ϵ -Cu_{0.95}V₂O₅ *via in-situ* XRD and XAS studies.

Collaboration

 Established collaborations both within BATT and with external partners on technique development, synthesis, and characterization.

*See backup slides for results of in-situ ion exchange, solvothermal synthesis

Technical Back-Up Slides

In-situ synthesis of Cu_{0.36}V₂O₅

- In-situ synthesis of $Cu_xV_2O_5$ (x ≈ 0.36) with an iso-structure to V_2O_5 , (orthorhombic) and an volume expansion by ~9.93% (by refinement);
- Direct dissolution-recrystallization reaction process;
- As-synthesized Cu_xV₂O₅ (x≈0.36): a rod-like morphology and uniform Cu distribution across the rods (by STEM- EDS mapping).

Residual Cu with cycling

Reference XAS spectra and V-O bonds

In-situ solvothermal synthesis of LiFeMnPO₄

- Succeeded in *in situ* synthesis of LiFePO4 and LiFe_xMn_{1-x}PO₄ solid solution using ethylene glycol (EG) as solvent;
- Identified reaction path way forming an intermediate phase at ~100°C and transformation to LiFe_{0.4}Mn_{0.6}PO₄ at ~180°C;
- Determined reaction mechanism (* to be published).

In-situ ion exchange synthesis of LiNaMnPO₄F

- Formation of NaBr and higher-angle shift of Na₂MnPO₄F peaks indicate the Li/Na ion-exchange reaction;
- However, the crystallinity is too poor to make detailed analysis and higher crystalline samples are being prepared.