

A Segmented Drive Inverter Topology with a Small DC Bus Capacitor

Gui-Jia Su Oak Ridge National Laboratory May 10, 2011

Project ID: APE004

2011 U.S. DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start FY09
- Finish FY12
- 65% complete

Budget

- Total project funding
 - DOE share 100%
- Funding received for FY10
 - \$735K
- Funding for FY11

 \$715K

Barriers

- Capacitor cost, volume, and weight
- Capacitor high temperature capabilities

Inverter targets

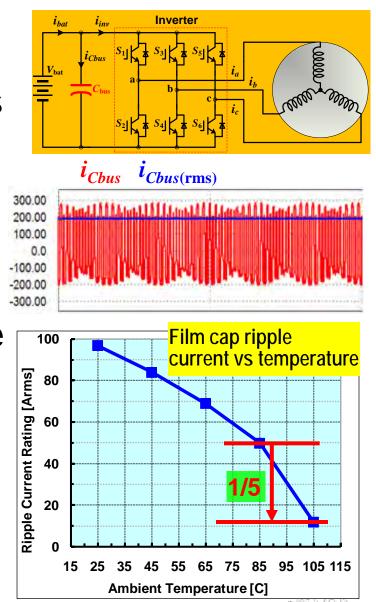
- Power density: 13.4 kW/I (2020 target)
- Specific power: 12 kW/kg (2015 target)
- Cost: \$5/kW (2015 target)

Partners

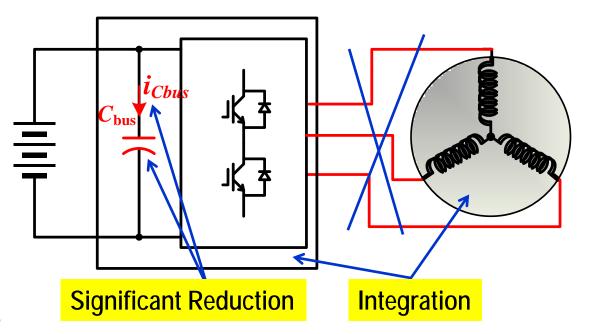
- ORNL team members: Lixin Tang, Cliff White, Larry Seiber, Zhenxian Liang, Mike Jenkins
- Powerex, UQM

Project Objective

- Design, develop, build, and test a 55 kW integrated segmented traction drive system that can reduce the dc bus ripple current and thus the capacitance by at least 60%
- The goal is to reach the 2015 targets of \$5/kW and 12 kW/kg and the 2020 volume target of 13.4 kW/l by significantly reducing the bus capacitance
- Eliminate the capacitor related hurdle for high temperature operations
- FY11 Objective: Design and build a 55 kW segmented inverter prototype for packaging with an IPM motor


Milestones

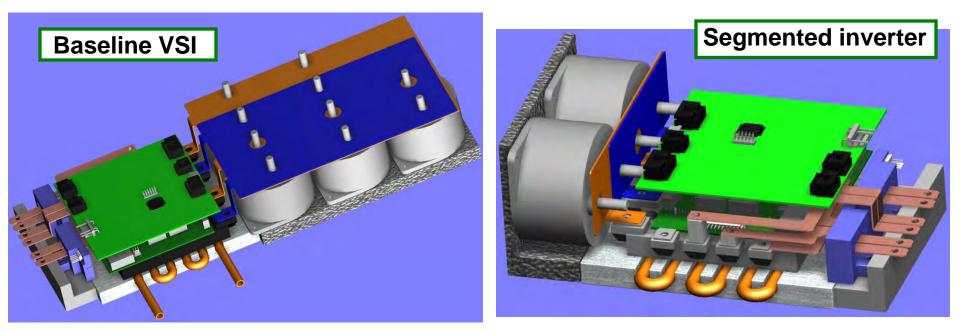
Month/Year	Milestone or Go/No-Go Decision
Sept-2010	$\frac{Milestone}{1000}$: Experimental demonstration of a 55 kW segmented inverter prototype with a dc bus capacitor of 400 μ F (reduced from 1000 μ F for a baseline inverter)
Sept-2010	Go/No-Go decision: Determine if developed inverter prototype has potential to meet the cost, volume and weight targets
Sept-2011	Milestone: Complete assembly of a 55 kW segmented inverter prototype for packaging with an IPM motor.
Sept-2011	<u>Go/No-Go decision</u> : Determine whether the integrated inverter/motor packaging design has the potential to meet the cost, volume and weight targets


The Problem and Approach (1)

- The VSI requires a large bus capacitor to absorb large ripple currents. Currently, the bus capacitor contributes
 - Cost and weight, up to 20% of an inverter
 - Volume, up to 30% of an inverter
- Increasing switching frequency has little impact on the magnitude of the ripple current
- Reducing the capacitance may increase battery ripple current
- Film capacitor ripple current and voltage capability decreases rapidly with temperature
- <u>Approach/needs</u>: significantly reduce cap ripple currents

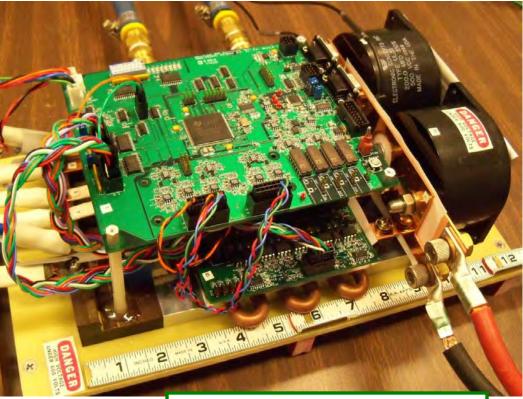
The Problem and Approach (2)

- Approach to Capacitor Ripple Current and Drive System Cost Reduction
 - Use a segmented drive system topology that does not need additional switches or passive components but can significantly reduce the dc link ripple current and the amount of capacitance
 - Integrate the segmented inverter and motor into a single package drive system to eliminate cable connections

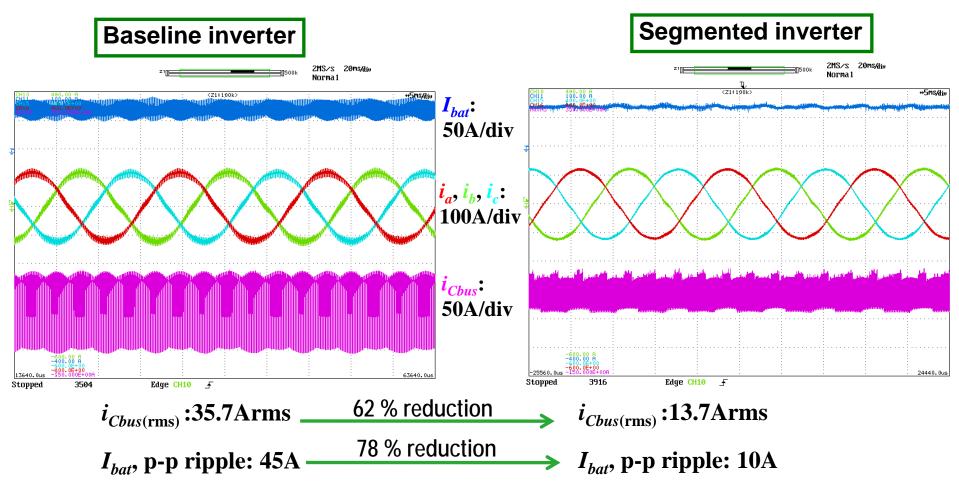


FY11 Approach Highlights

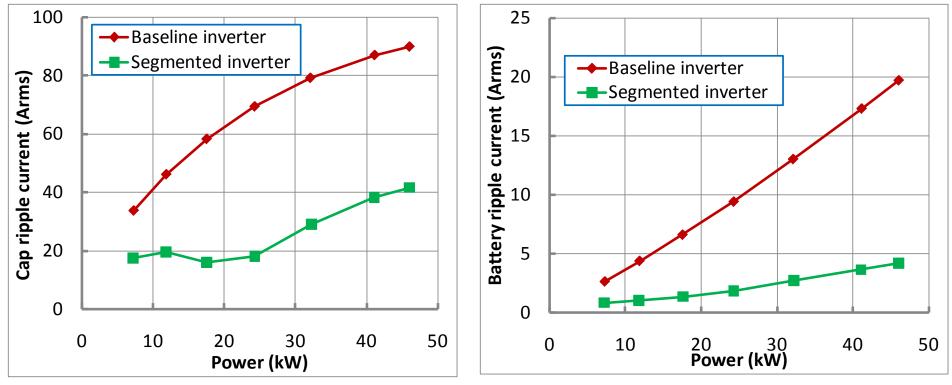
- Work with a PM motor manufacturer to select, procure and modify a motor for packaging together with a segmented inverter
- Design a 55 kW segmented inverter for integrating with the motor
 - Leveraging ORNL's new packaging capability, design custom IGBT modules and an inverter package suitable for integrating with the motor
 - Design gate driver and DSP control boards that fit well into the inverter package
 - Conduct mechanical stress modeling to make sure that inverter package can withstand anticipated vibrations
- Fabricate and package a 55 kW integrated segmented inverter/motor prototype


- Hardware design for 55 kW prototypes
 - Two capacitors for segmented inverter, each rated at 500V/200µF
 - Five capacitors for baseline inverter, each rated at 500V/200µF

	Baseline	Segmented	
Heat sink footprint	6"x7"+ 6.6"x9.6"	6"x7"+ 6.6"x2.2"	
Cap. volume			a 60 % reduction
cap. volume	1.39L	0.JUL -	

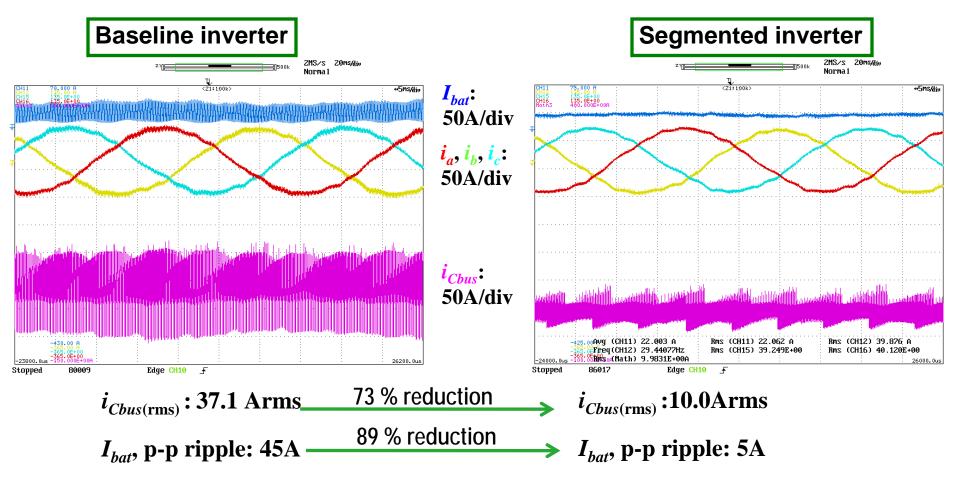

- A 55 kW Segmented Inverter Prototype
 - Powerex IGBT modules
 - Water cooled with a cold plate of 7"x6"
 - TI's 32bit fixed-pint DSP chip, TMS320F2812

55 kW Segmented inverter



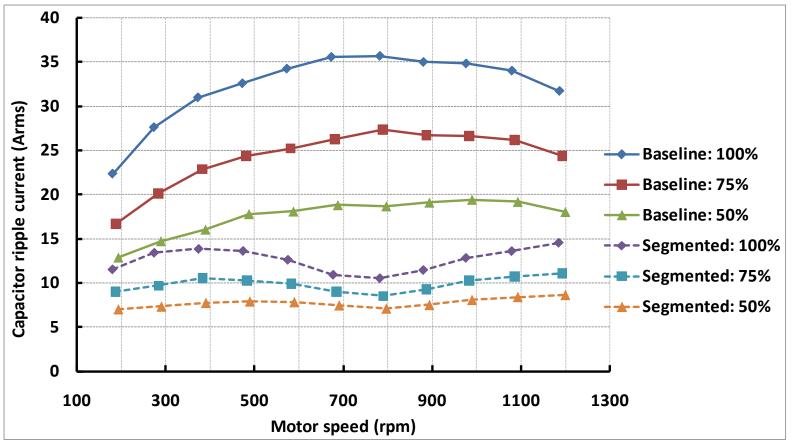
Test Results with a RL Load — Typical waveforms

 Test Results with an RL Load — Comparison of capacitor and battery ripple current



Capacitor ripple current vs. dc input power for an R-L load

Battery ripple current vs. dc input power for an R-L load

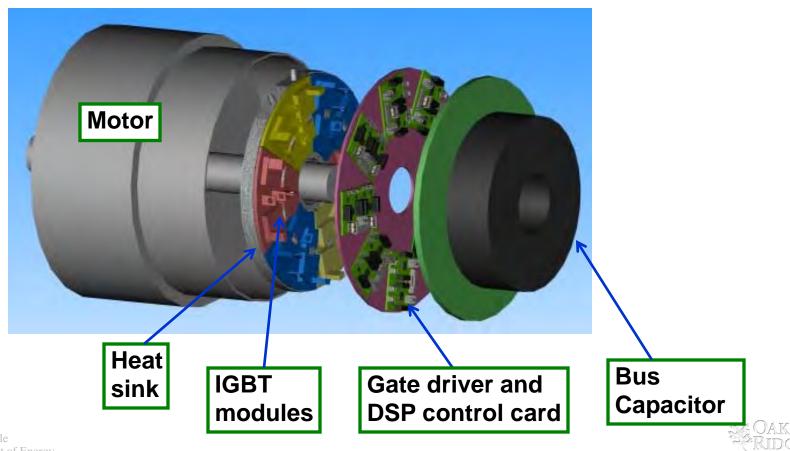


- Test Results with an induction motor Typical waveforms
- Motor ratings: 15 HP; 91 Nm; 37.5 Arms

Test results — Induction motor

Comparison of dc bus capacitor ripple current vs. speed at various percentages of rated torque.

(Motor ratings: 15 HP; torque, 91 Nm; current, 37.5 Arms)



• Estimated performance improvements

	Camry Inverter ^(a)			Segmented Inverter ^(b)			
	Weight	Volume	Cost	Weight	Volume	Cost	
	(kg)	(L)	(\$)	(kg)	(L)	(\$)	
Bus Cap	3.57	2.6	182	1.43	1.04	73	
Others	3.99	3.36	728	4.02	3.37	735	
Subtotal	7.56	5.96	910	5.45	4.41	808	
Metrics	kW/kg	kW/L	\$/kW	kW/kg	kW/L	\$/kW	
	9.3	11.7	13	12.8	15.9	11.5	
DOE	12	12	5	14.1	13.4	3.3	
targets	2015			2020			
*Assumptions: (a) capacitor cost is 20%;							
(b) a reduction of 60% in capacitor requirement.							

- An integrated segmented inverter design
- Motor candidates
 - UQM IPM motor
 - 2004 Prius motor

Future Work

- Reminder of FY11
 - Complete design of a 55 kW segmented inverter for integrating with the motor
 - Implement the PWM techniques in real-time control DSP code
 - Fabricate and package a 55 kW integrated segmented inverter/motor prototype
- FY12
 - Test, characterize, and refine the 55 kW integrated segmented inverter/motor drive prototype developed in FY11

Collaborations

- Powerex
 - IGBT modules
- UQM
 - PM motor
- Capacitor vendors (Electronic Concepts, SBE)
 - Custom capacitors
- Leveraging ORNL's packaging research efforts and ORNL's expertise on materials science and technology
 - Packaging material
 - Power module packaging

Summary

- The segmented inverter can reduce bus capacitance by 60%, resulting in exceeding the 2015 weight target of 12 kW/kg and the 2020 volume target of 13.4 kW/l
- Test results on a 55 kW prototype demonstrated significant reductions of
 - 55~75% in capacitor ripple current
 - 70~90% in battery ripple current
 - 60~80% in motor ripple current
- Other Positive Impacts
 - Reduce battery losses and improve battery operating conditions due to substantially reduced battery ripple current
 - Significantly reduce the motor torque ripples (up to 50%), and reduce switching losses by 50%
 - Enabler for high temperature operations

