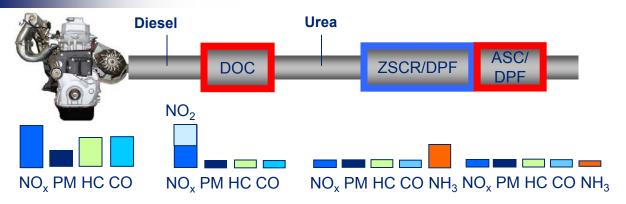
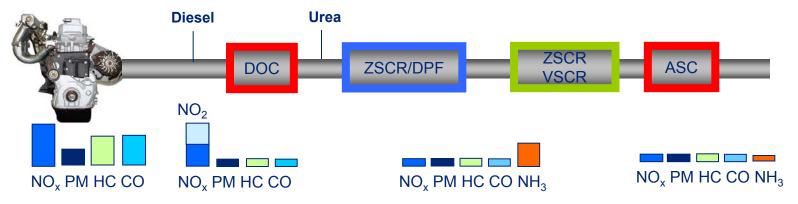


SCR-DPF integrations for diesel exhaust Performance and perspectives for high SCR loadings

RESEARCH | TECHNOLOGY | CATALYSTS

DEER conference, 2012-10-17

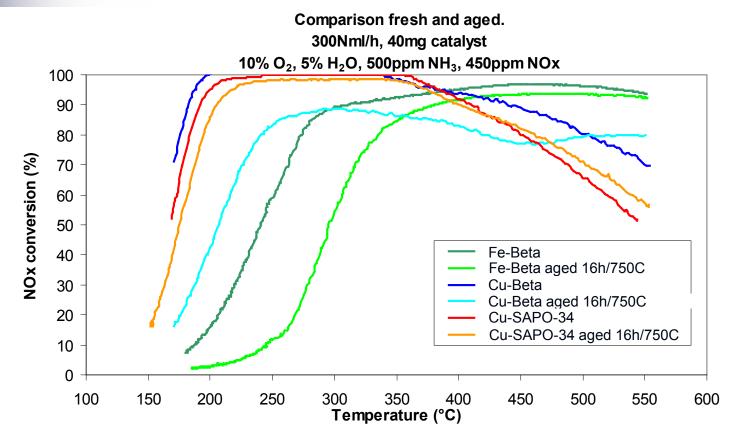

Milica Folić/Keld Johansen


HALDOR TOPSØE 🖪

Outline

- SCR integration in DPF: Why and how?
- Challenge: High temperature stable SCR
- Filters types and porosities: Lab screening
- Results on LD engine bench
- Conclusions and future outlook

SCR integration with DPF: Why and how?

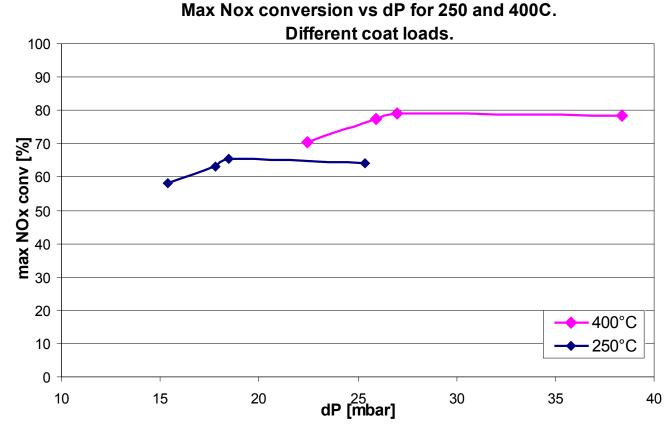


- Integration advantages:
 - Lower volume, cost
 - Improved transfer: heat, gas components
- Earlier urea injection, improved cold start SCR
- Low exhaust temperature
 HALDOR TOPSOE I

High temperature stable SCR formulations

- SCR catalyst that tolerates up to 800-900°C?
 - Fe- β -zeolite not stable and requires NO₂
 - V₂O₅/ WO₃/ TiO₂ not stable
 - Cu- β-zeolite not stable
- Cu chabazite (and alike) materials are good candidates
 - Cu-SAPO-34 chosen for this study (ZSCR)
 - Cost-effective solution for small ring zeolites

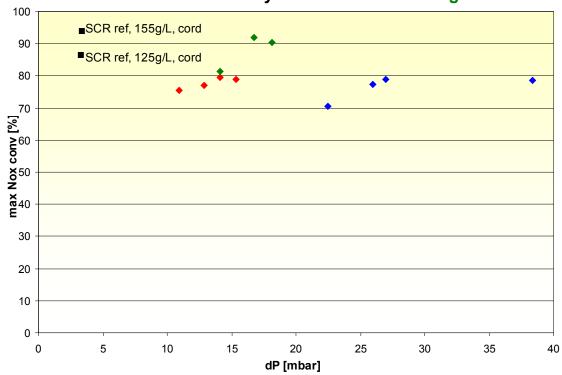
Thermal effects and hydrothermal stability


650 °C

- Big difference in hydrothermal stability: Cu-Beta vs. Cu-SAPO-34
- Cu-SAPO-34 must be activated @high T to obtain activity
 - Decrease in Cu surface concentration upon calcination

Filter materials: lab screening

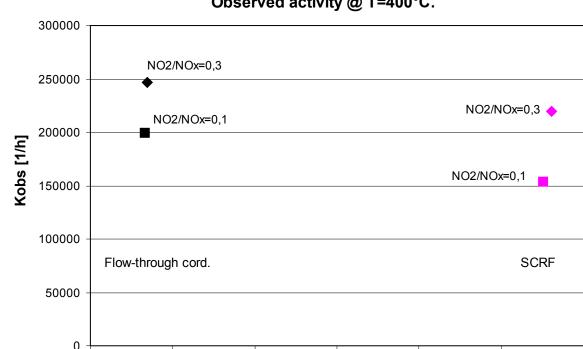
- Candidates with porosity potential (57–75%) for SCR integration:
 - SiC Cordierite ATI Mullite
- Coat load range 100–220 g/L depending on the filter material
- Focus on DeNOx performance and pressure drop
- DeNOx/Ap optimal SCR loadings found
- All samples benchmarked against flow-through monoliths
- Notation:
 - 'Low' porosity: 57-60%
 - 'Medium' porosity: 65%
 - 'High' porosity: 75%


Optimal coat load study: Low porosity at NHSV = $100,000 h^{-1}$

- Above certain coat load only dP continues increasing
- A small drop in NOx conversion observed at too high loads

HALDOR TOPSØE

SAPO-34 coating on different filters



T=400°C. Porosity: Low vs Medium vs High

- NOx conversion proportional to coat load
- High porosity gives best trade-off between dP and DeNOx

HALDOR TOPSØE

DeNOx activity with NO₂=f(Δp , T). Low porosity

5

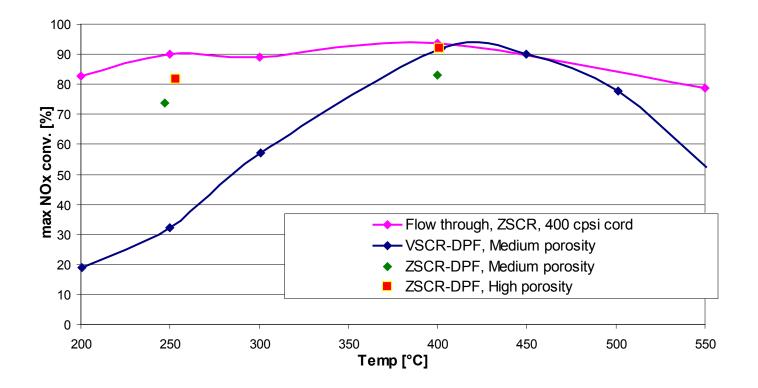
0

Observed activity @ T=400°C.

For low porosity filters, addition of NO₂ can help close the gap in activity between SCR/DPF and flow-through

dP [mbar]¹⁵

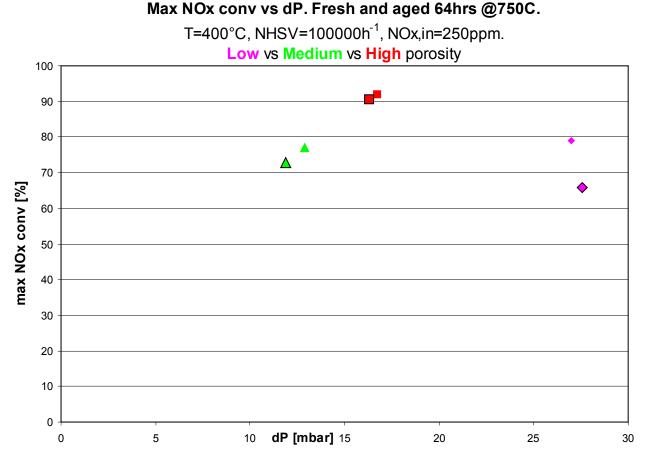
10


20

25

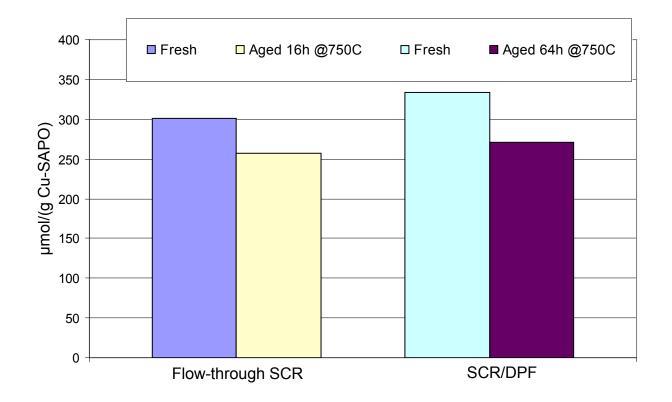
30

HALDOR TOPSOE


VSCR-DPF comparison with ZSCR-DPF

VSCR-DPF shows good high temperature activity [400-500°C]

BUT: Almost no low temperature activity left


Max NOx conversion after 64hrs @750°C

Stability is proportional to the coat load/porosity

Little change in performance of high porosity filter

Ammonia storage upon ageing

- Very stable ammonia storage capacity at 250°C
- Higher storage for filters due to better contact with coat

Laboratory findings

- Coat load optimum (120–180g/L) & coating procedure established for various materials/porosities
- High coat load gives the same DeNOx as flow-thorough
- Satisfactory performance after ageing for 64hrs @750°C
- Several porosity filters chosen for up scaling and engine bench tests with soot

Engine validation tests

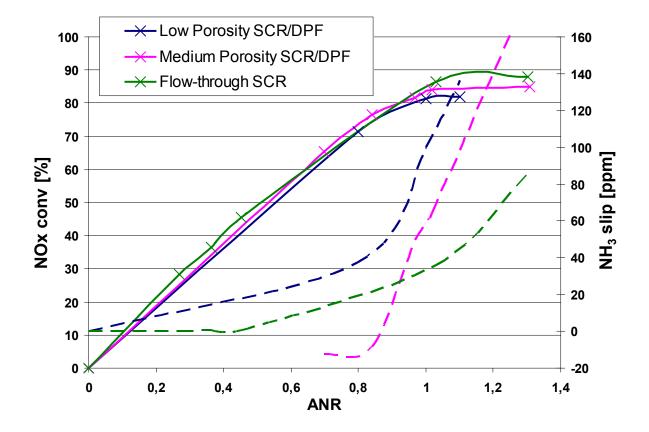
- 1. Soot Δp curve
- 2. Active soot regeneration (T_{in}=600 °C, 4- 5 g/l)
- 3. Steady state NOx activity with soot (4-5 g/l)
- 4. WHTC: fresh & aged filter
- 5. NH₃ absorption w & w/o soot
- 6. Passive/NO₂ soot regeneration (BPT w & w/o urea)
- 8. PN and PM filtration
- 9. Drop to idle test (4-5 g/l)
- 10. Ash influence

CAN TESTS WITH SOOT CHANGE THE OBTAINED LAB RATING?

Engine bench: LD test cell

Engine	Volvo D5204T3	
Displacement	1984 cm ³	
Rated power	120 (109) kW	
Original emission level	Euro 5	
Original after treatment	EGR + DOC + DPF	
Engine out NOx WHTC	5.3 g/kWh	
		Urea dosing Urea dosing Hydolysis mixer

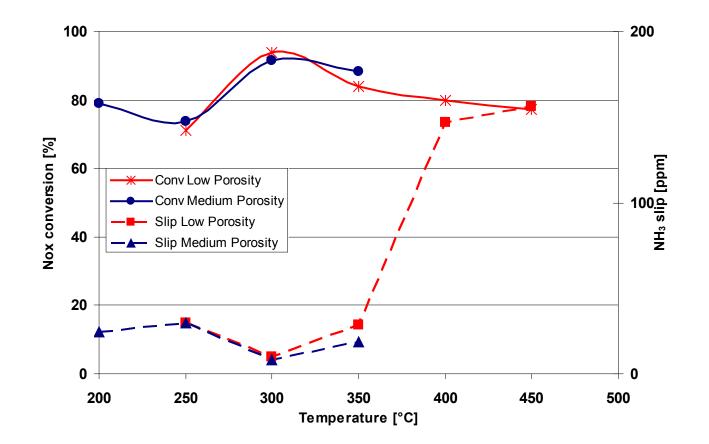
WHTC. ANR=0,8 for Low porosity filter


NOx out NO_x in T filter inlet NH3 slip
 250
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200
 200</th NOx [ppm] Time [s]

NO₂/NOx 70% DOC out Average NHSV= $38000h^{-1}$ Average T_{before filter} = $220^{\circ}C$

ANR	NOx conv [%]	Average NH ₃ slip [ppm]
0.8	71.3	37.4
1	81.4	100

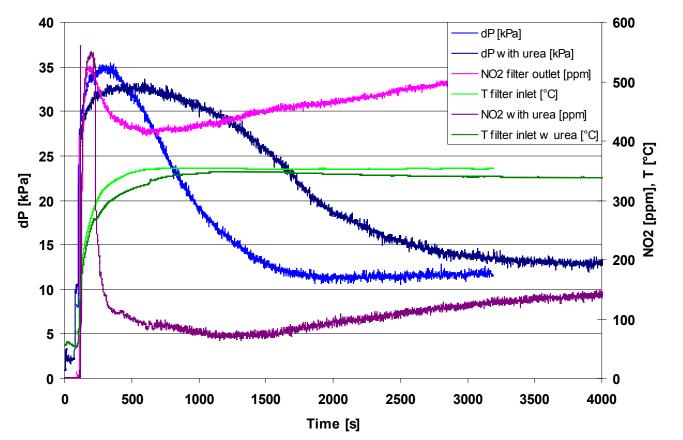
ANR 0.8


Comparison with flow-through SCR

	Filter	Flow-through
NHSV _{av} [h ⁻¹]	38000	47000

HALDOR TOPSOE

Steady state DeNOx, low and medium porosity filters



NHSV=55000h⁻¹. ANR=0,9. Conversion over DOC + ZSCR/DPF

HALDOR TOPSØE 🖪

Passive regeneration @ T~350°C Low porosity filter

Soot [g/l]	No urea	With urea
Start	6.15	5.4
End	1.8	2.45
Regen. efficiency	71%	55%

BPT=295°C

HALDOR TOPSØE

Conclusions and future outlook

- SCR+DPF replacement with 'ZSCR/DPF only' is possible
- Good NOx conversions in test cycles for different porosities
- High coat load gives equivalent activity to flow-through
- dP for ZSCR/DPF is near traditional cDPF + SCR systems
- Passive regeneration: SCR and soot compete for NO₂.
 DOC must be optimized for high NO₂
- Active regeneration: max soot load and T ramping management need good control (thermal peaks risk)
- Selection of high loading ZSCR/DPF requires full validation!

Henrik Bentzer		
Bjarne Møller		
Anni Stahl		
Jakob Høj		
Tais Jeppeseh	CAN DOSPESS	
Shannie Nielsen	TOUR BUSINESS	
Kenneth Larsen		and a factor

SCR-DPF integrations for diesel exhaust Performance and perspectives for high SCR loadings

RESEARCH | TECHNOLOGY | CATALYSTS

DEER conference, 2012-10-17

Milica Folić/Keld Johansen

HALDOR TOPSØE 🖪