

Scale-Up of Magnesium Production by Fully Stabilized Zirconia Electrolysis

PI: Adam C. Powell, IV Presenter: Steve Derezinski INFINIUM, Inc. May 16, 2013 Project ID: LM035

TIMELINE

Project start date: 10/1/2011 Project end date: 11/30/2014 Percent complete: 33%

BUDGET

Total project funding: \$12M •\$6M DoE •\$6M INFINIUM Budget Period 1 •\$2,000,000 DoE •\$2,027,924 INFINIUM Budget Period 2 •\$2M DoE •\$2M INFINIUM

BARRIERS

Clean & cost-effective magnesium production

PARTNERS

Praxair, Inc.

Kingston Process Metallurgy

Boston University

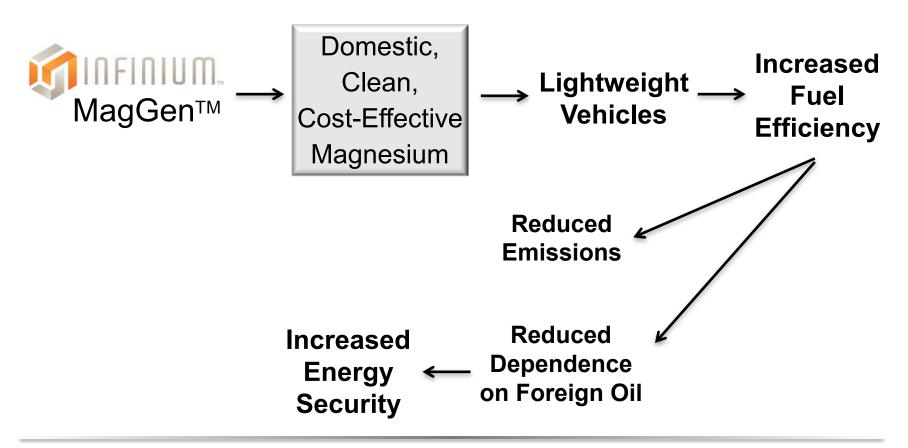
Exothermics, Inc.

Spartan Light Metal

Cosma International Automotive Partnerships Canada

OBJECTIVES

 Scale up INFINIUM's primary magnesium production from laboratory demonstration to pre-production pilot plant.


Budget Period 1

- Design, build, & test an alpha prototype electrolysis system
- Optimize zirconia tube composition & structure
- Calculate costs, energy use, & emissions
- Produce & test magnesium
- ♦ Identify potential plant sites

DOE VTP GOALS

Approach

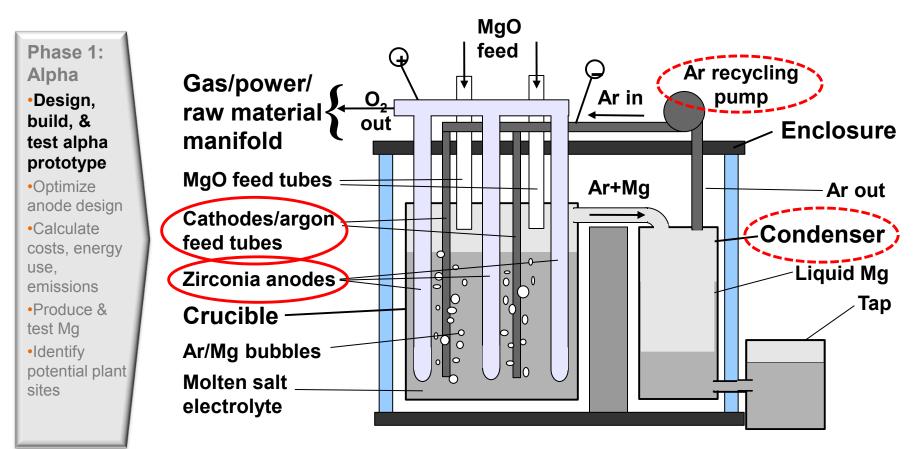
Phase 1: Alpha Prototype

- •Design, build, & test alpha prototype
- •Optimize anode design
- •Calculate costs, energy use, & emissions
- •Produce & test magnesium
- Identify potential plant sites

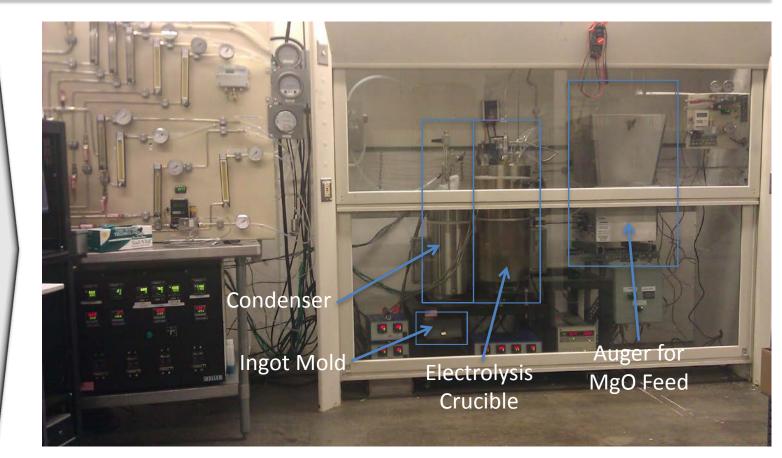
Phase 2: Beta Prototype

- Design, build, & test beta prototype
- Achieve prototype-scale anode manufacturing
- Produce magnesium; make & test parts
- Model plant costs, energy use, & emissions
- Select plant site

Phase 3: Prototype Operation & Plant Design


- •Develop automated processes for alpha & beta prototypes
- Prepare for plant-scale anode manufacturing
- •Produce & test magnesium automotive parts
- •Model full lifecycle costs, energy use, & emissions
- Acquire plant site

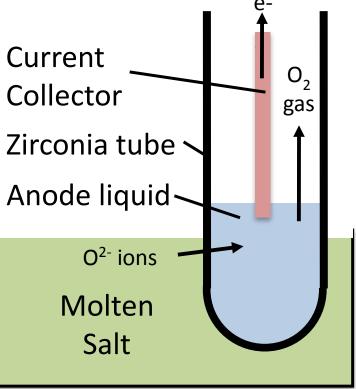
Due	PHASE 1 MILESTONES	Status
Nov 2012	Conduct electrolysis in alpha	Complete
Nov 2012	Demonstrate stable, O ₂ -producing anode assembly	Complete
Nov 2012	Calculate economically viable costs, energy use, & emissions	Complete
Nov 2012	Achieve sufficient purity to meet Mg alloy specifications	Complete
Nov 2012	Identify potential plant sites	Complete



MagGen™ Schematic

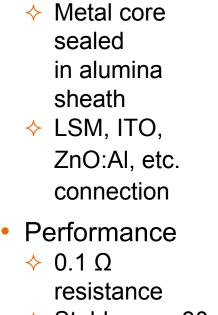
Phase 1: Alpha

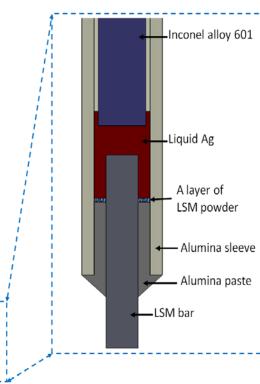
- Design, build, & test alpha prototype
- Optimize anode design
- Calculate costs, energy use, emissions
- Produce & test Mg
- Identify potential plant sites


Alpha Prototype

Phase 1: Alpha

- Design, build, & test alpha prototype
- Optimize anode design
- Calculate costs, energy use, emissions
- Produce & test Mg
- Identify potential plant sites


- Liquid silver anode
 - Simple, robust O₂
 generation
- Current collector
 - Metal sealed in sheath
 - LSM, ITO, ZnO:Al, etc. connection
- Zirconia tube
 - Key differentiator
 Anode Assembly


Phase 1: Alpha


- Design, build, & test alpha prototype
- Optimize anode design
- Calculate costs, energy use, emissions
- Produce & test Mg
- Identify potential plant sites

Design

 Stable over 30 hours runtime

Developed in collaboration with Boston University

Current Collector

Phase 1: Alpha

•Design, build, & test alpha prototype

•Optimize anode design

Calculate
costs, energy
use,
emissions
Produce &
test Mg
Initiate plant
design

- Best COTS tubes
 - ♦ 6YSZ
 - ♦ 96-97% dense
- Custom Tosoh tubes

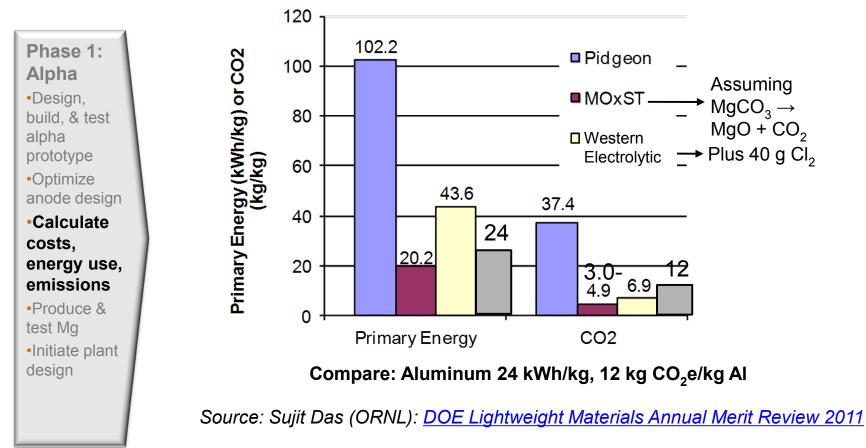
 8YSZ, 10YSZ
 - 99.5% dense

Custom Tube Production

- Phase 1: Alpha
- •Design, build, & test alpha prototype

•Optimize anode design

Calculate costs, energy use, emissions
Produce & test Mg
Initiate plant design


- Integrates argon bubble curtain
- Low cathode current density
- Oxide ion mass transfer to anode
 - Makes an easy hot swappable component

INTEGRATED ANODE-CATHODE

Industrial Energy Use & GHG Emissions

Phase 1: Alpha

- Design, build, & test alpha prototype
- Optimize anode design
- Calculate costs, energy use, emissions
- Produce & test Mg
- Identify potential plant sites

Element	Percent	Element	Percent
Mg	99.95	V	0.0005
Fe	0.033	W	0.0005
Cu	0.007	Ce	0.0005
Mn	0.0041	Th	0.0005
Na	0.0022	В	0.0005
AI	0.0016	Pb	0.0003
К	0.0014	Ni	0.0003
Si	0.001	Cd	0.0001
Sn	0.0005	Со	0.0001
Мо	0.0005	Cr	0.0001
N	0.0005	Ca	0.0001
Р	0.0005	Zn	0.0001
Ti	0.0005		

> 99.95% Pure Magnesium from INFINIUM MagGen[™]

Mg Composition

Collaboration & Coordination w/ Other Institutions

- •Kingston Process Metallurgy
 - Transparent crucible electrolysis
 - ♦ Salt recycling
- Boston University
 - Current collector
 - Salt-metal interactions
 - Current efficiency improvements
- Praxair
 - Process gases
 - Argon recycling
- Exothermics
 - ♦ Materials expertise & testing

BUDGET PERIOD 2 & 3

- Spartan Light Metals
 - Mg product testing
- Vehma
 - Mg vehicle component testing

INFINIUM

Proposed Future Work

Due	PHASE 2 & 3 MILESTONES	Status
Nov 2013	Conduct electrolysis in beta	On Schedule
Nov 2013	Produce sufficient anode assemblies for prototypes	On Schedule
Nov 2013	Provide sufficient Mg for tensile testing	On Schedule
Nov 2013	Select plant site	On Schedule
Nov 2014	Achieve industry uptime standard for prototypes	On Schedule
Nov 2014	Demonstrate scalable anode assembly manufacturing	On Schedule
Nov 2014	Demonstrate satisfactory Mg performance in automotive parts	On Schedule
Nov 2014	Acquire plant site	On Schedule

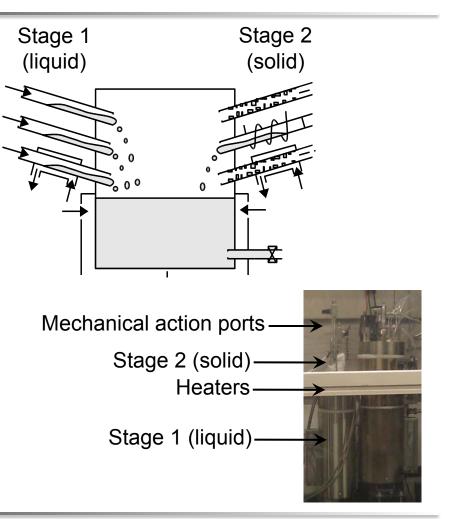
Proposed Future Work

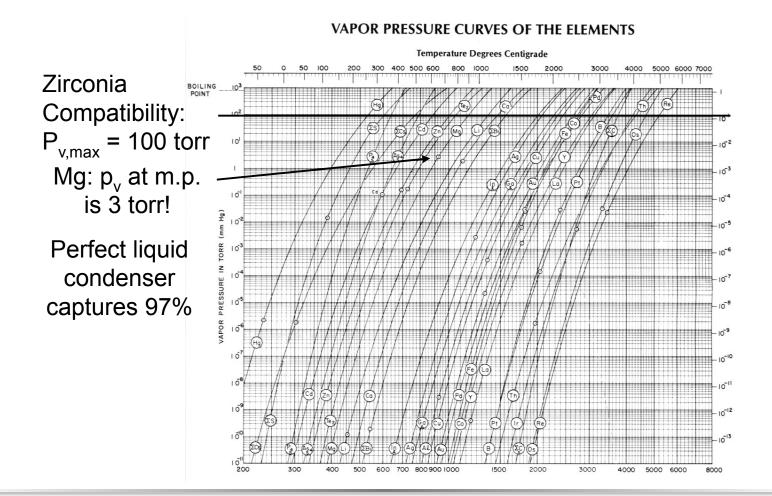
Beta Prototype

Summary

- Alpha furnace online & producing Mg
- In-house zirconia tubes optimize structure, composition, & cost
- Lowest energy use & GHG emissions
- Mg meets alloying purity standards
- Plant sites near Niagara Falls
 - Low cost electricity
 - Ship & rail lines access

Technical Back-Up Slides


Two-Stage Condenser


- Condense liquid first, then solid
- Drive solid into liquid to melt it
 - ♦ Melt it
 - ♦ Mechanically drive it
 - Cool it

20

 Submerged bubbler variation

Mg Condenser Constraint

Argon Recycling

- Important to reduce cost of Argon
 - Test results show very pure Argon for recycling
- Simple pump e.g. regenerative blower
- Highly-reactive magnesium in condenser removes nearly everything: O, N, Cl, F
 - \diamond Very few gases build up: H₂, S₂, maybe entrained Mg
- Chemical trap e.g. steelmaking slag particle bed

$$Fe_{2}O_{3}+CaO+H_{2}\rightarrow 2FeO+Ca(OH)_{2}$$
$$3Fe_{2}O_{3}+CaO+\frac{1}{2}S_{2}\rightarrow 6FeO+CaSO_{4}$$
$$Fe_{2}O_{3}+Mg\rightarrow 2FeO+MgO$$