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Overview 
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Project Start: 10/1/11 
Project End: 9/30/14 
Percent Complete: 45% 

• Barriers addressed 
– By 2015, reduce PHEV-40 battery cost to $300/kWh 
– By 2020, further reduce EV battery cost to $125/kWh. 

• Materials processing cost reduction and electrode quality control 
(QC) enhancement. 

– Achieve 500 Wh/L energy density. 
– Achieve deep discharge cycling target of 3000-5000 

cycles for PHEVs (2015) and 750 cycles for EVs (2020). 

• Total project funding 
– $900k 

• $300k in FY12 
• $300k in FY13 

Timeline 

Budget 

Barriers 

• Interactions/Collaborations 
 Equipment Suppliers: Ceres 

Technologies, Keyence, FLIR 
 Battery Manufacturers: Dow Kokam, 

A123 Systems 
 Materials Suppliers: TODA America 
 National Laboratories: ANL, NREL 

• Project Lead: ORNL 

Partners 
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Project Objectives 
• Main Objective: To raise the production yield of lithium secondary 

batteries to 99% by reducing electrode scrap and the amount of 
defective electrode assembled into cells. 
– Reduce lithium ion battery system cost by implementing in-line NDE and electrode QC. 
– In-line, cross-web laser sensing for electrode thickness monitoring. 
– IR thermography for electrode coating defects (agglomerates, pinholes, blisters, etc.). 
– In-line XRF for active material composition and areal-weight uniformity. 
– Secondary objective to enable high-energy cathodes: in-situ and ex-situ microstructural 

and magnetic analysis and explanation of advanced active-material capacity fading 
mechanisms. 

• Relevance to Barriers and Targets 
– Implementation of critical QC methods to reduce scrap rate 

by creating electrode processing feedback loops (to 
meet $300/kWh 2015 VTP storage goal for PHEVs). 

– Correlation of cathode microstructural changes and 
electrode processing parameters to meet 500 Wh/L and 
long-term cell performance needs. 
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Project Milestones 
Status Milestone or 

Go/No-Go 
Description 

Complete FY12 Go/No-
Go 

Correlate in-situ XRD with ex-situ magnetic susceptibility data. 

Complete FY12 Milestone Correlate wet and dry thickness using in-line laser thickness 
measurement (wet) and ex-situ XRF (dry). 

Complete FY12 Milestone In-situ XRD results through 100 cycles with TODA HE5050. 

3/2013 FY12 Milestone An in-line XRF prototype demonstration by Ceres Technologies. 

Complete FY12 Milestone Identification of an appropriate Keyence laser thickness sensor(s). 

6/2013 FY12 Go/No-
Go 

Determine feasibility of in-line XRF with respect to required electrode 
coating line speeds. 

6/2013 FY13 Milestone Determine feasibility of measurement of deliberately introduced metal 
contaminants into cathodes with in-line XRF. 

6/2013 FY13 Milestone Correlate wet and dry thickness using cross-web laser thickness 
measurement (wet) and in-line XRF (dry) to within ±10%. 

7/2013 FY13 Milestone Ceres Technologies to lock final design of in-line XRF system. 

9/2013 FY13 Milestone Transfer technology associated with these three techniques to 
industry partner. 

4 



David L. Wood, III, DOE Annual Merit Review, May 14, 2013 

Project Approach 
• Problems to be addressed: 

– Excessive scrap rates of electrodes and lack of ability to detect coating defects prior to 
formation cycling. 

– Conventional electrode QC involves thickness/areal-weight measurement by beta gauge, 
which uses ionizing radiation (safety concern) and expensive equipment. 

– Need correlation of in-situ and ex-situ materials characterization with electrode production 
quality and long-term performance. 

• Overall technical approach and strategy: 
– Demonstrate efficacy of in-line QC techniques utilized in other industries (plastics, textiles, 

ceramics, photovoltaics, etc.) on ORNL pilot coating equipment. 
– In-line laser thickness measurement and in-house IR imaging technology (for detection of 

coating defects) has been demonstrated on ORNL slot-die coating line. 
– In-line XRF is being demonstrated on the ORNL tape casting line for cathode areal weight 

and compositional uniformity. 
– Work is underway with NREL to develop in-line electrode porosity uniformity. 
– Establish the diagnostic tools in-situ XRD, TEM, electron diffraction, magnetic 

susceptibility, and neutron scattering to quantify effect of microstructural changes on 
capacity fade and relationship to electrode coating quality. 

• Link electrode NDE and diagnostic tool information 
– Are electrode QC issues exacerbating capacity fade mechanisms? 
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Technical Accomplishments – Executive 
Summary 
• FY12 Q1-2: Exploratory in-line measurement work and establishment of materials characterization 

methods (Presented at 2012 DOE AMR). 
• FY12 Q3-4: Slot-die coater integration of in-line laser thickness and IR thermography 

measurements and in-situ XRD correlation with magnetic susceptibility and TEM (Following 
Slides). 

• FY13 Q1-2: Implementation of cross-web laser thickness measurement, installation of IR 
camera on slot-die coater, and identification of capacity fade mechanisms for TODA HE5050 
(Following Slides). 

• FY13 Q3-4: Receipt of in-line XRF equipment and completion of initial experiments on tape caster; 
correlation of thickness measurements between laser, IR, and XRF techniques; and full suite of 
materials characterization on TODA HE5050 after 1000 half-cell cycles (2014 DOE AMR). 

• Specific Accomplishments 
– Precision of in-line laser thickness measurement improved to << ±2% (calibrated with bare Al 

foil with ±3.7% thickness deviation). 
– Thickness deviation of cathodes typically ±2.3-2.0%, and for anodes typically ±2.2-2.6%. 
– IR imaging has been completed on (TODA HE5050 and NCM 523) cathodes and (CP A12 graphite) 

anodes and both heat-trapping and heat-releasing defects have been found. 
– Design of Ceres Technologies in-line XRF instrument is complete. 
– Both TEM and magnetic susceptibility data were correlated with in-situ XRD results for TODA 

HE5050 cathode (spinel phase formation and structural oxygen release identified). 
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Overview of Lithium Ion Electrode QC 
State-of-the-Art 
• Conventional in-line thickness and/or areal weight by beta transmission gauge: 

– Thickness measurement precision of ±0.2% over 2-1000 µm 
– But expensive equipment (several hundred thousand dollars or more) 
– And ionizing radiation hazard (typically 300-1000 mCi sources) 

• Optical inspection with HR-CCD cameras (only uses visible light for detection). 
• Optical and beta transmission techniques provide no compositional information. 
• Raman microscopy – Panitz and Novák, J. Power Sources, 97-98, 174 (2001). 
• Without feedback loops to electrode dispersion mixing and deposition steps, laser and 

XRF NDE methods will not reduce scrap rate (i.e., “electrode QC”). 
• However, QC will still be improved by simply removing scrap (i.e. IR NDE) to avoid 

assembling defective electrode area into cells (i.e. “cell QC improvement”). 
• Pass/fail criteria must be established industry wide for NDE methods to be meaningful 

and provide “cell QC”; proposed criteria: 
– Thickness (laser or XRF)  ±1% measurement precision and ±2% thickness deviation. 
– Areal weight (XRF)  ±2% measurement precision and ±3-4% areal-weight deviation. 
– Coating defects (IR)  mark small sections for removal from electrode rolls. 
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High-Precision Thickness Measurement 

• Laser calibration with bare Al foil 
– Average Thickness: 15.07 µm 
– Standard Deviation: 0.56 µm 
– Nominal Al foil thickness = 15 µm 
– Room Temperature = 18.5°C 
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TODA NCM 523 Cathode Thickness Measurement 
ABR Baseline Cathode (Entire Run) 

1 2 3 

Average coating thickness: 129 µm 
Standard Deviation: 3.71 µm 

Average coating thickness: 125 µm 
Standard Deviation: 3.81 µm 

Average coating thickness: 127 µm 
Standard Deviation: 2.98 µm 
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CP A12 Graphite Anode Thickness Measurement 
ABR Baseline Anode (Entire Run) 

Cu foil 
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Average coating thickness: 162 µm 
Standard Deviation: 3.61 µm 

Average coating thickness: 161 µm 
Standard Deviation: 3.54 µm 
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IR Thermography Setup with ORNL 
Slot-Die Coater  

Dry electrode exiting 
convective heating zones IR Camera 

• Current IR 
Camera: FLIR 
SC-8200 

• Lens: 25 mm, no 
filters or extender 
rings 

• Flash System: 
Hensel 6000 
Joules 

• Flash Power: 
60% 

• Next generation 
IR camera will be 
mounted at the 
oven exit (rewind) 
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IR Imaging Evaluation on ConocoPhillips 
A10/A12 Graphite Coating 

Temperature line scan 
across defect region 

shows decrease – divot, 
pinhole, etc. 

Presence of a defect  
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IR Imaging Detects Different Defects 

• A temperature increase 
across defect region 
corresponds to a blister or 
agglomerate where heat can’t 
be released as fast. 

• Temperature decreases 
correspond to pinholes and 
divots where heat is released 
faster. 

CP A10/A12 
Graphite 
Anode 

TODA 
NCM 523 
Cathode 
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Areal Weight and Compositional 
Uniformity Using In-Line XRF 

14 

• Unit designed for ORNL is a hybrid that is desktop sized, but it allows for in-
situ measurement of cathode coatings (delivery date is scheduled for the end 
of March 2013). 

• XRF unit will be placed at the end of ORNL tape casting line. 
• Key process parameter is line speed that the detector can handle, which will 

be evaluated. 

Desktop Unit for Off-line Measurement Industrial Unit for In-Situ Measurement 
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LMR-NMC (TODA HE5050) High-Voltage Cathode 
Challenges 

Composition: Li1.2Co0.1Mn0.55Ni0.15O2 

0.5 LiNi0.27Mn0.27Co0.27O2
  · 0.5 Li2MnO3 

R-3m Trigonal  
( Hexagonal or 

 Rhombohedral  or O3) 
C2/m 

Monoclinic 

Major obstacles 

4.5 V 
60h hold 
70h hold 
90h hold 

1. Voltage decay/fade (≥4.5 V)                  2. Impedance rise during holding at 4.5 V 

15 

(a) 

D. Mohanty et al., Journal of Power Sources, 
229, 239–248 (2013). 

D. Mohanty et al., Journal of Materials 
Chemistry A, Under Review, 2013. 
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Advanced Materials Characterization Applied to 
Understanding High-Voltage Cathode Phase Transformation  

Pristine 
electrode  

After charged to 
4.5 V (BH) 

After charged to 
4.5 V and hold 
for 90h (AH90) 

µeff =3.08 µB 
 

Layered trigonal and  
monoclinic  
reflection 

µeff =2.70 µB 
 

Layered+ Spinel (faint) 
reflections 

µeff = 2.89 µB   
Oxidation state  

changes 
 

Strong spinel phase 

TEM / SAED Magnetic Susceptibility 
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Magnetic Susceptibility Measurement Applied 
to Elucidating LMR-NMC Voltage Fade 
• Disappearance of 

magnetic ordering in 
TODA HE5050 
structure after 100 
cycles  when cutoff 
voltage was 4.8 V. 

• Magnetic ordering is 
retained after 100 
cycles when cutoff 
voltage was 4.2 V. 

Illustrates the change 
in cation -ordering in 
LMR-NMC during 
high voltage cycling 
(4.8 V) causing 
voltage fade. 

Cutoff V = 4.8 V Cutoff V = 4.2 V 

Cutoff V = 4.8 V Cutoff V = 4.2 V 

17 

D. Mohanty et al., Journal of Materials 
Chemistry A, In Preparation, 2013. 
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Understanding LMR-NMC Voltage Fade 
via In-Situ XRD • In-situ XRD patterns reveal a 

different trend in lattice 
parameter change for TODA 
HE5050 cathode after 
subsequent cycles compared 
to the first 1.5 cycles. 

• a- lattice parameter remained 
constant during first cycle 
plateau region (4.4-4.6 V), 
which confirms oxygen 
release. 

• (440) spinel reflection was 
successfully detected during 
low-voltage discharge (3.5-2.4 
V) after 16(36) cycles, which 
confirms phase 
transformation in the TODA 
HE5050 cathode. 

Layer to spinel phase 
transformation causes the 
voltage fade in LMR-NMC 
cathodes. 
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D. Mohanty et al., Journal of Power Sources, 229, 239–248 (2013). 
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TODA HE5050 – Coatings to Pouch Cells 

• In-line QC is used to improve 
pouch cell reliability. 

• We will correlate laser thickness, 
IR thermography, and XRF data 
with diagnostic tool (in-situ XRD, 
TEM, electron diffraction, and 
magnetic susceptibility) 
information. 

• Neutron diffraction experiments 
with pouch cells are in progress. 

In-line laser thickness 
measurement of coating 

Positive  electrode: TODA HE5050
Negative electrode: A12 Graphite
2.5- 4.7 V, C/15 (After formation cycles)
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Collaborations 
• Partners 

– Equipment Suppliers: Ceres 
Technologies, Keyence, FLIR 
Systems 

– Battery Manufacturers: A123 
Systems, Dow Kokam 

– Raw Materials Suppliers: TODA 
America, ConocoPhillips 

– National Labs: ANL, NREL 

• Collaborative activities 
– Determining best laser sensors to use with Keyence for electrode thickness based on line 

speed, thickness range, etc. for cross-web measurement. 
– Development of an in-line XRF measurement system with Ceres Technologies tailored for 

measuring lithium ion cathode areal weights and compositional uniformity. 
– Working with NREL to develop new method of in-line porosity measurement based on thermal 

diffusivity. 
– Ongoing discussion with industry partners Dow Kokam and A123 Systems about 

implementation of these techniques on industrial electrode production lines. 
– Continued collaboration with ANL on TODA HE5050 voltage fade and impedance rise issues. 
– Collaboration with ANL on neutron scattering of HE5050 cathode at ORNL SNS. 

20 
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Future Work 
• Remainder of FY13 

– Mount in-line IR camera onto oven exit of ORNL slot-die coater (May 2013). 
– Obtain in-line XRF thickness and composition data on ORNL tape caster (May 2013). 
– Full analysis of first neutron scattering data set for TODA HE5050 cathode for identification of 

lithium, transition metal, and oxygen site occupancy (May 2013). 
– Transition from point scan to line or multipoint (cross-web) scan for in-line laser thickness 

measurement on ORNL slot-die coater (June 2013). 
– Obtain in-situ XRD results through 1000 cycles on TODA HE5050 cathode (August 2013). 
– Correlate TODA HE5050 magnetic susceptibility and TEM measurements with in-situ XRD data 

through 1000 cycles to determine microstructural changes associated with capacity fade (Sept. 
2013). 

– Obtain 200 cycles with full pouch cells using TODA HE5050 cathode and CP A12 graphite 
(Sept. 2013). 

– Proof-of-concept measurements for in-line electrode porosity uniformity with NREL (Sept. 2013). 

• Into FY14 
– Develop feedback loop for dispersion pumping rate with in-line thickness measurement as input. 
– Identify industrial partner to scale selected in-line QC methods. 
 Detailed correlation of electrode QC measurements with diagnostic tool information. 

21 



David L. Wood, III, DOE Annual Merit Review, May 14, 2013 

Summary 
• Objective: this project facilitates lowering unit energy cost of EVs and PHEVs by 

addressing the electrode scrap rate, QC enhancement, and calendar life. 

• Approach: implements QC measures utilized effectively in other industries. 
– Processing costs tied to QC are addressed. 
– Ease of implementation of measurement technology at low equipment cost. 
– Long-term objective is to correlate in-line coating defect measurement data with diagnostic 

tool information and develop QC feedback loops. 

• Technical: Successful implementation of laser thickness measurement and IR 
thermography equipment on ORNL slot-die coater; demonstrated successful 
measurements with in-line XRF on ORNL tape caster. 

• Collaborators: Active discussions with industry partners Dow Kokam and A123 Systems 
on scaling measurement techniques; developing next in-line technique based on thermal 
diffusivity with NREL. 

• Commercialization: High likelihood of technology transfer because of tight industrial 
collaboration, significant electrode production cost reduction, and lower-cost QC 
measurement equipment. 
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Information Dissemination and 
Commercialization 

• Refereed Journal Papers 
– D. Mohanty, S. Kalnaus, R.A. Meisner, K.J. Rhodes, E.A. Payzant, D.L. Wood, and C. Daniel, “Structural Transformation of a Lithium-Rich 

Li1.2Co0.1Mn0.55Ni0.15O2 Cathode During High Voltage Cycling Resolved by In-Situ X-Ray Diffraction,” Journal of Power Sources, 229, 239–248 
(2013). 

– D. Mohanty, S. Kalnaus, R.A. Meisner, A. Safa-Sefat, J. Li, K.J. Rhodes, E.A. Payzant, D.L. Wood, and C. Daniel “Structural Transformation in a 
Li1.2Co0.1Mn0.55Ni0.15O2 Lithium-Ion Battery Cathode During High-Voltage Hold,” RSC Advances, DOI:10.1039/C3RA40510A, 2013. 

– D. Mohanty, A. Safa-Sefat, S. Kalnaus, J. Li, R.A. Meisner, E.A. Payzant, D.P. Abraham, D.L. Wood, and C. Daniel, “Investigating Phase 
Transformation in Li1.2Co0.1Mn0.55Ni0.15O2 Lithium-Ion Battery Cathode During High-Voltage Hold (4.5 V) via Magnetic, X-ray Diffraction and 
Electron Microscopy Studies,” Journal of Materials Chemistry A, Under Review, 2013. 

– D. Mohanty, A. Safa-Sefat, J. Li, S. Kalnaus, R.A. Meisner, D.L. Wood, and C. Daniel, “Investigating the Voltage Fading Mechanism in a 
Li1.2Co0.1Mn0.55Ni0.15O2 High-Voltage Lithium Ion Battery Cathode via Magnetic and Diffraction Studies,” Journal of Materials Chemistry A, In 
Preparation, 2013. 

– D. Mohanty, J. Li, E.A. Payzant, A. Safa-Sefat, R.A. Meisner, D.P. Abraham, D.L. Wood, and C. Daniel, “Investigating the Voltage Fading 
Mechanism in a Li-Rich Cathode During High Voltage Lithium Ion Battery Cycling: A Combined Neutron Diffraction and Magnetic Susceptibility 
Study,” Journal of The American Chemical Society, In Preparation, 2013. 

– D. Mohanty, A. Safa-Sefat, J. Li, S. Kalnaus, R.A. Meisner, D.L. Wood, and C. Daniel, “Investigating Cation Ordering and Microstructure in 
Li1.2Co0.1Mn0.55Ni0.15O2 During First-Cycle Charge and Discharge by Magnetic Susceptibility and Transmission Electron Microscopy,” Chemistry of 
Materials, In Preparation, 2013. 

– D. Mohanty, L.C. Maxey, R.B. Dinwiddie, J. Li, and D.L. Wood, “Improved QC of Slot-Die Coated Lithium Ion Battery Electrodes by IR 
Thermography and Laser Thickness Techniques,” Analytical Methods , In Preparation, 2013. 

• Presentations 
– D. Mohanty,  S. Kalnaus, R. Meisner, A. Safa-Sefat, J. Li, D.L Wood, and C. Daniel, “Structural Evolution in Lithium-Rich 

0.5Li2MnO3·0.5LiNi0.375Co0.25Mn0.375O2  Cathode During High Voltage Cycling; an In Situ X-Ray Diffraction Investigation”, MRS 2012, Boston, 
Massachusetts, November 25, 2012. 

– D. Mohanty, A. Safa-Sefat, J. Li, S. Kalnaus, R.A. Meisner, D.L. Wood, and C. Daniel, “Investigating the Cation-Ordering in 
0.5Li2MnO3.0.5LiNi0.375Co0.25Mn0.375O2 Cathode by Magnetic and Transmission Electron Microscopy Studies,” ACS Spring Meeting, New Orleans, 
Louisiana, April 7, 2013 (Accepted as ACS Presentation On Demand). 
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Thank you for your attention! 

Rechargeable battery
Voltage: 3.7-4.5V

Capacity: 100mAh-7Ah

Pictured Left to Right above: 
David Wood (ORNL), Mike 

Wixom (A123 Systems), Erin 
O’Driscoll (Dow Kokam), Claus 
Daniel (ORNL), and Secretary of 
Energy Steven Chu at the ORNL 
Battery Manufacturing Facility 

(BMF) 
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Jianlin Li 
(Staff Researcher) 

Bradley Brown 
(Lab Technician) 
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