
Reducing Vehicle Emissions to Meet Environmental Goals

Tom Cackette

California Air Resources Board

DEER 2009 – Dearborn August 3, 2009

Less Summertime Smog

Less Particle Pollution

Decrease in Particle Pollution¹ 2000-2007

San Bernardino

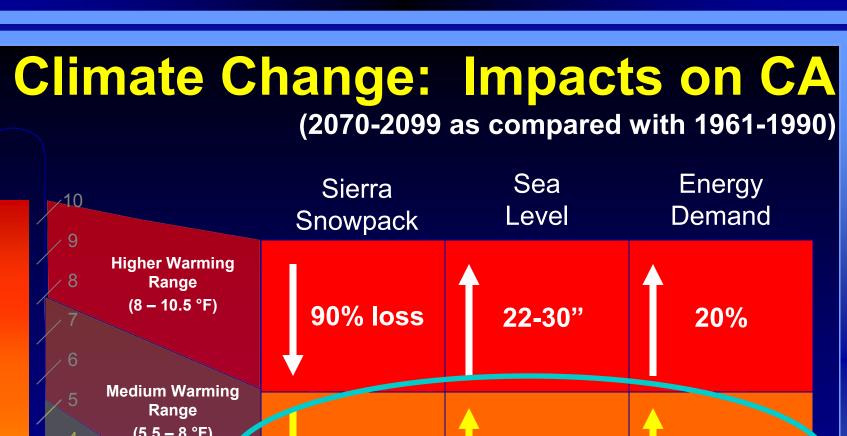
Roseville

Visalia

32%

32%

15%


¹ PM2.5

What More is Needed to End Urban Pollution?

- Future passenger vehicles as clean as the best today (SULEV)
- New Diesel trucks/equipment 95+% cleaned up
- Accelerated turnover
 - \$50+ million/yr scrapping passenger vehicles
 - Retrofit 90+% of legacy diesel vehicles
- Clean up many remaining smaller sources
- Clean ambient air standards will be met
 - PM2.5 by 2015
 - Ozone by 2023

New Challenge - Climate Change

Goal: stabilize global temperature

 $(5.5 - 8 ^{\circ}F)$

Lower Warming Range

(3 - 5.5 °F)

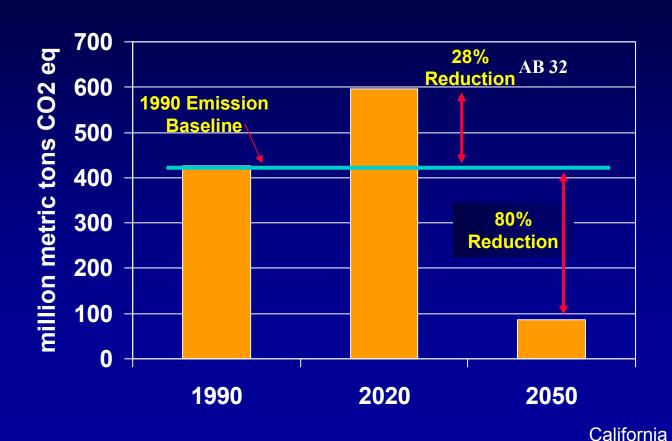
70-80% 14-22"

loss

30-60% 6-14" oss

10%

3-6%


٥F

New Challenge - Climate Change

- Goal: stabilize global temperature
- 80% reduction in CO₂e emissions by 2050

Magnitude of the Challenge

All Sources

Climate Change - Formula for Success

- Basic formula for success:
 - 1. Increase vehicle efficiency by ~3X

Efficient Technologies - Three Phases

Model Years	Regulatory Driver	GHG Reduced*	Technology
Now -2016	Pavley 1	30%	Conventional drive trains – off the shelf technologies

^{*} From baseline

Efficient Technologies Three Phases

Model Years	Regulatory Driver	GHG Reduced*	Technology
Now -2016	Pavley 1	30%	Conventional drive trains – off the shelf technologies
2017-2025	Pavley 2	~50%	Hybrid drive trains Less weight

^{*} From baseline

Climate Change - Formula for Success

- Basic formula for success:
 - 1. Increase vehicle efficiency by ~3X
 - 2. Transition from petroleum to ultra low carbon-fueled vehicles
 - Few vehicles in 2050 still use high carbon fuels

Efficient Technologies - Three Phases

Model Years	Regulatory Driver	GHG Reduced*	Technology
Now -2016	Pavley 1	30%	Conventional drive trains – off the shelf technologies
2017-2025	Pavley 2	40-50%	Hybrid drive trains Less weight
2015-2050	ZEV 2	80+%	Electric drive Ultra low carbon fuels

^{*} From baseline

Most vehicles need to be like these by 2050

Transportation Vision: 2050 One Possible Scenario

% veh. 10%

mpg 40 mpg

GHG 2050

Reduce passenger vehicle GHG by 87%

% veh. 72%

mpg 80+ mpg

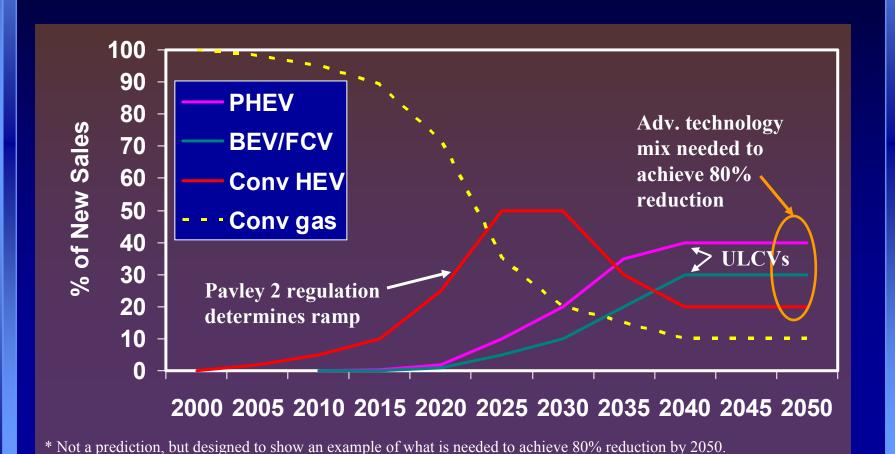
Biofuel/HEV

% veh. 18%

mpg 60 mpg

Timing: Introduction of Ultra-Low Carbon Vehicles

Commercial- ization Phase	Market Share - New Vehicle Sales	~Years to occur
Early	A few 100s >	10
commercial	~ 1 %	(2020)


Timing: Introduction of Ultra-Low Carbon Vehicles

Commercial- ization Phase	Market Share -	~Years to occur
Early	New Vehicle Sales A few 100s →	10
commercial Commercial	~1 % ~1% → max. market	(2020) 15
expansion	acceptance	(2035)

Timing: Introduction of Ultra-Low Carbon Vehicles

Commercial- ization Phase	Market Share - New Vehicle Sales	~Years to occur
Early commercial	A few 100s → ~1 %	10 (2020)
Commercial expansion	~1% > max. market acceptance	15 (2035)
Fleet turnover	Remain at max. market acceptance	15 (2050)

Example of Possible* Ultra Low Carbon Vehicle Introduction Rates

Climate Change - Formula for Success

- Basic formula for success:
 - 1. Increase vehicle efficiency by ~3X
 - 2. Transition from petroleum to ultra low carbon-fueled vehicles
 - Few vehicles in 2050 still use high carbon fuels
 - 3. Reduce VMT (~20%)
 - 4. Do the same for all other sources (including rest of transportation)

Summary

- Conventional technologies provide near-zero smog emissions
 - Will solve urban pollution problem
- New technologies required to address climate change
 - High efficiency (3X current) electric drive necessary
 - Ultra-low carbon fuels e.g. e and H₂
 - Multiple transportation fuels likely
 - Commercialization must start in next decade