2010 DOE Vehicle Technologies Program Review Presentation

Recovery Act—Transportation Electrification Education Partnership for Green Jobs and Sustainable Mobility DE-EE0002119 ARRAVT038

Huei Peng (PI), Anna Stefanopoulou, Zoran Filipi, Ian Hiskens, Chris Mi, Don Siegel, Jack Hu, Judy Jin, Hosam Fathy, Ed Borbely The University of Michigan

> James Gover, Mark Thompson, Craig Hoff Kettering University

> > June 7-11, 2010

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start date: 2009/10/01
- End date: 2012/09/30
- Percent complete: 20%

Budget

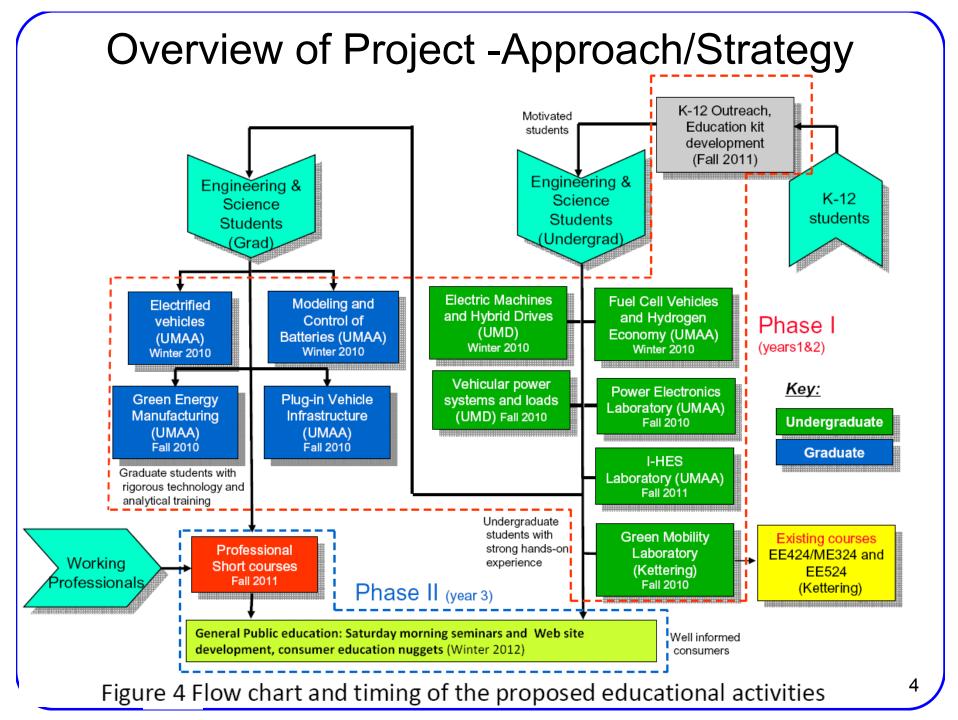
- Total project funding
 - DOE share: \$2.5M
 - Contractor share: \$735,975
- Funding received in FY09: 0
- Funding for FY10: 320K

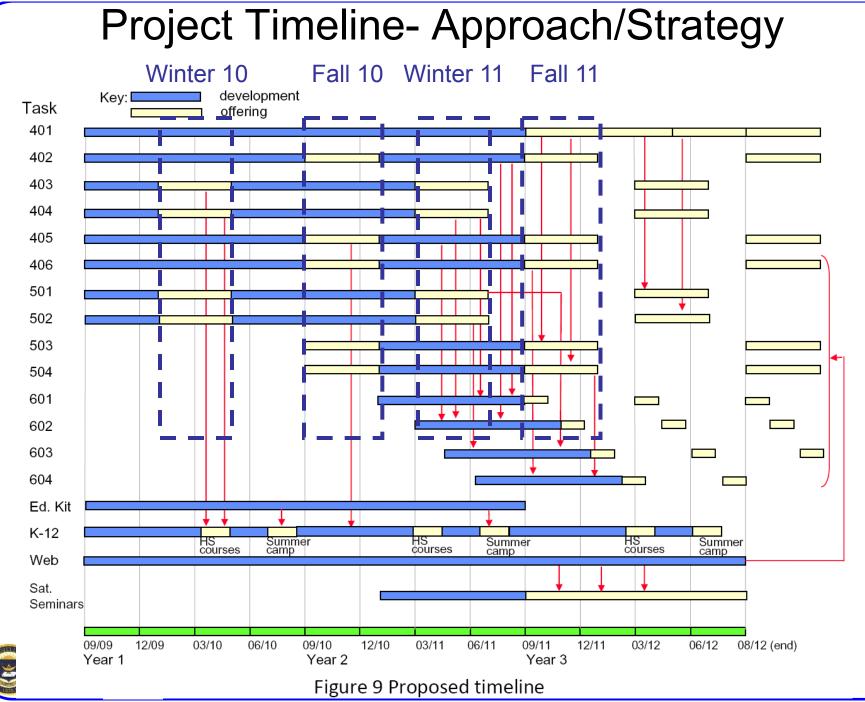
Barriers

- Lab renovation
- Purchase of lab equipment and development of technical content
- Leverage of consumer outreach effort

Partners

- AVL/A&D/NI in equipment
- GM/Ford/DTE in course development and teaching
- GM in short courses


Project Scope-Relevance


Objective:

To develop graduate, undergraduate and short courses and outreach activities in the field of Electrified Transportation

Graduates	Undergraduates	Professionals	Pre-College
Modular Courses available online (UMAA)	Multi-Campus Modular Courses (UMAA,UMD, Kettering)	Web-Based Modular short Courses Face-to-face Short Courses (UMAA,UMD, Kettering)	Education Kits for electric automobile
Graduate students in all engineering disciplines M. Eng. Degree in Energy Systems and Automotive	Strong Lab Experience		K-12 student outreach, summer program
	B.S. with Energy concentration (UMAA)		Science Teachers
Engineering (UMAA), available through distance learning	B.S. with Green Mobility Specialty (Kettering)	Certificate Programs Graduate degree through	Outreach & Education
Training & Internship	B.S. with concentration in Electric Energy (UMD)	distance education	
Consumer Education • Saturday morning seminars • Web site development, consumer education nuggets			

Tasks (years 1-2)-- Approach/Strategy

Task 1 – Development of 4 graduate courses

Campus	Course	Faculty	Title
UMAA	501	Peng & Filipi	Electrified Vehicles
UMAA	502	Stefanopoulou & Fathy	Modeling and Control of Batteries
UMAA	503	Hu	Green Energy Manufacturing
UMAA	504	Hiskens	Plug-in Vehicle Infrastructure

Task 2 – Development of 6 undergraduate courses and laboratories

Campus	Course	Faculty	Title
UMAA	401	Filipi & Peng	Integrated Hybrid Electric System (I-HES) Laboratory
UMAA	402	Hiskens	Automotive Power Electronics Laboratory
UMAA	403	Siegel & Stefanopoulou	Fuel Cell Vehicles and Hydrogen Infrastructure
UMD	404	Mi	Electric Machines and Hybrid Drives
UMD	405	Mi	Power Systems (vehicular power systems and loads)
		Gover, Thompson &	
Kettering	406	Hoff	Green Mobility Laboratory

Task 3 – Development of K-12 outreach activities

Campus	Course	Faculty	Title
UMAA	"101"	Hiskens & others	K-12 Outreach
UMAA	"102"	Fathy	Development of an Education kit for Electric Automobiles
			6

Tasks (year 3)-- Approach/Strategy

PHASE II (year 3)

Campus	Course	Faculty	Title
UMAA	"103"	Peng & Borbely	Saturday morning Seminars and Web site development
UMD	"601"	Mi	Power Electronics System Integration
			Electrified Vehicle Semiconductor Power Devices and Heat
	"602"	Gover	Transfer
UMAA	"603"	Stefanopoulou	Modeling and Control of Batteries
UMAA	"604"	Peng & Filipi	HEV and PHEV System Integration and design

Accomplishments and Progress

- W 10 Courses
- Summer Camp for high school students
- Automotive education kit
- Laboratory development

Winter 10 Courses

- 501 (Electrified vehicles, Peng&Filipi)
 - Distance learning to be offered in SP/SU
- 502 (Modeling and control of batteries, Stefanopoulou&Fathy)
 - Distance learning
- 403 (Fuel Cell Vehicles and Hydrogen Infrastructure, Siegel & Stefanopoulou)
 - Distance learning

-404 (Electric Machines and Hybrid Drives, Mi)

With some minor changes: Course title, course level

501 Modeling, Analysis and Control of Hybrid Electric Vehicles

- Modeling, analysis and control of vehicles with electrified propulsion systems, including electric vehicles, hybrid vehicles, plug-in and fuel cell vehicles. Introduce the concepts and terminology, the state-of-the-art development, energy conversion and storage options, modeling, analysis, and simulation of key components, system integration and vehicle supervisory and servo-loop control systems.
- Enrollment: 33
- Distance learning in SP/SU: enrollment ~ 50

501 Course Outline

Lecture	Торіс		
1 (1/6)	Introduction, motivation		
2 (1/11)	Introduction of electrified power-train concepts. Final project ideas		
3 (1/13)	Energy for Transportation; environmental impact		
4 (1/20)	MATLAB-SIMULINK review		
5 (1/25)	APUs for hybrid electric vehicles – IC engine fundamentals, challenges and		
	opportunities		
6 (1/27)	APUs for HEVs – SI engine processes, performance and fuel efficiency		
7 (2/1)	APUs for HEVs – CI engine processes, performance and fuel efficiency		
8 (2/3)	APUs for HEVs – Novel combustion modes, synergy with hybrid systems		
9 (2/8)	Integrated IC Engines systems: turbo-charging, aftertreatment and modeling		
10 (2/10)	Power electronic devices and motors—introduction and modeling		
11 (2/15)	Modeling of power split devices for hybrid vehicles		
12 (2/17)	Integrated vehicle system model		
13 (2/22)	Modeling and analysis of series electric hybrid powertrains		
14 (2/24)	Driving schedules and impact on electrified vehicle design and control		
15 (3/8)	Midterm		
16 (3/10)	Case studies—simulations of three electrified vehicles		
17 (3/15)	Vehicle control hierarchy and power management		
18 (3/17)	Optimal design and control of a parallel hybrid vehicle		
19 (3/22)	Plug-in hybrid vehicles—energy consumption, emissions and battery sizing		
	optimization		
20 (3/24)	Modeling and control issues of batteries		
21 (3/29)	Modeling and control issues of batteries		
22 (3/31)	Modeling and analysis of split hybrid power-trains		
23 (4/5)	Modeling and analysis of split hybrid power-trains		
24 (4/7)	Control of split hybrid vehicles		
25 (4/12)	Emission issues— fundamentals, modeling and control		
26 (4/14)	Major design issues and consideration of Hybrids		
27 (4/21)	Report/Final Project Presentation		

502 Vehicle Electrification (Part A): Battery Systems and Control

- Battery modeling, control and diagnostic methodologies associated with battery electric and battery hybrid electric vehicles. Emphasis is placed upon system-level modeling, model order reduction from micro-scale to macro-scale and surrogate models for load control, estimation, on-board identification and diagnostics for Lithium Ion batteries.
- Enrollment: 59 (with 5 distance learning students)

502 Course Outline

Chapter 1: Introduction

Battery Electric and Hybrid Vehicles (BEV and BEHV) Voltage, Power, and the Electrical point of view Chemistries and aging mechanisms

Chapter 2: Modeling and Simulation

Physics-based modeling: Concentration, Potential, Butler-Volmer, Aging Numerical Approximation Model Order Reduction

Chapter 3: Battery Controls

Control Minimal realization State of Charge Estimation Electric Circuit Equivalent Control-Oriented Model Parameterization State of Health Estimation

Chapter 4: Stack Management

Active Cell Balancing Thermal Management

Chapter 5: Vehicle Power Level

Electric Architectures DC/DC Converters Fuel Consumption Minimization Power management (PHEV)

403 Vehicle Electrification (Part B): Hydrogen and Fuel Cells

- Essential aspects of fuel cell vehicle technology, hydrogen fueling infrastructure, and potential benefits & barriers to the use of hydrogen as a vehicular fuel. Emphasis is placed upon systemlevel modeling and control issues of polymer electrolyte membrane fuel cells.
- Enrollment: 47 (with 4 distance learning students)

403 Course Outline

Chapter 1: Overview: Fuel Cell Vehicles (FCV) and Hydrogen as a vehicular fuel

Benefits of a transition to FCV

(Reduced petroleum consumption, energy independence, lower CO₂ emissions...) Types of fuel cells and their Chemistries Barriers to the commercialization of FCV (Infrastructure, H₂ production & storage, FC durability, DOE Performance and cost Targets)

Chapter 2: Modeling and Control of Polymer Electrolyte Membrane Fuel Cells

Voltage regulation (Pressure boost & Voltage buck/boost) Air Flow Loop (sizing, pressure selection, stoichiometry, autonomy) Cooling Loop, Startup and Mal-distribution Hydrogen Loop (high pressure pure H2, Backpressure & Recirculation loop, Dead-ended) Water management Impedance diagnostics Degradation

Chapter 3: Fuel Cell Vehicle

Basic architecture of a FCV ("a FCV is a HEV;" power electronics) Power electronics, Hybridization strategies Power Management, Battery and FC Sizing

Chapter 4: Hydrogen production technologies

DOE Targets for cost and efficiency Technologies: Coal, natural gas (steam reforming), nuclear energy, electrolysis, wind and solar energy, biomass and photobiological processes

Chapter 5: Infrastructure for Hydrogen Distribution and Refueling

Scenarios for the introduction of FCVs and their supporting infrastructure Distributed hydrogen production vs. production at central stations Maximum practicable number of vehicles that can be fueled by hydrogen by 2020 Funding and policy actions needed to achieve that goal

Chapter 6: Hydrogen Storage I: Fundamentals

DOE System-level targets, Types of storage: physical vs. chemical Chemical storage methods: conventional metal hydrides, complex hydrides, chemical hydrides, sorbents, Capacity, Thermodynamics, Kinetics

Chapter 7: Hydrogen Storage II: Engineering considerations

Thermal conductivity, Effective media density Heat management during refill Control and interface with the FC powerplant

Chapter 8: Hydrogen Safety / Codes & Standards

Chapter 9: Life-cycle and Well-to-Wheels Analyses of FCV

Introduction to the Argonne H2A Model, Petroleum consumption Greenhouse gas emissions (CO2 reduction), Energy efficiency/energy use Cost of ownership, Comparisons with: conventional ICE vehicles, HEV, PHEV, EV

404 Electric Machines and Hybrid Drives

- Course taught at UM Dearborn
- An introductory course on electric machines and drive systems. The topics covered in this course include DC machines, induction machines, permanent magnet synchronous machines, and switch reluctant motors and drives. Case studies in automotive applications such as electric and hybrid drivetrains are discussed.
- Enrollment: 45

404 Course Outline

- Characteristics of Vehicle Loads
- DC Motor Drives
- Permanent Magnet AC Drives
- Induction Motor Drives: Steady State and V/f Control
- Switched-Reluctance Drives
- Case Studies: EV, HEV, Plug-In Hybrid, Fuel Cell Vehicles
- Projects
- Exams

Summer Camp

- Hands-on examples
 - PHEV example from Dearborn
 - Motor and Battery lab
 - Solar car team
- Academic and industrial lecturers (Ford, GM, DTE)
- 11th and 12th graders (Huron and Pioneer, 20-30)
- August 11-13

Automotive Educational Kit

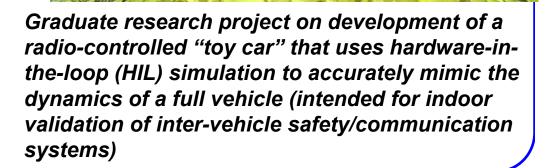
- First step is to gather information and purchase representative education kits already on the market, compare and learn from them.
- Short list of candidate undergraduate researchers identified. Final selection of 1-2 undergraduate researchers in progress
- NI NXT brick identified as foundation for robotic toy kit
- Conceptual design of coupled kits ongoing

Motivating Success Story

- The LEGO Robotic Toolkit...
- ... An outgrowth of Piaget's/Papert's epistemology

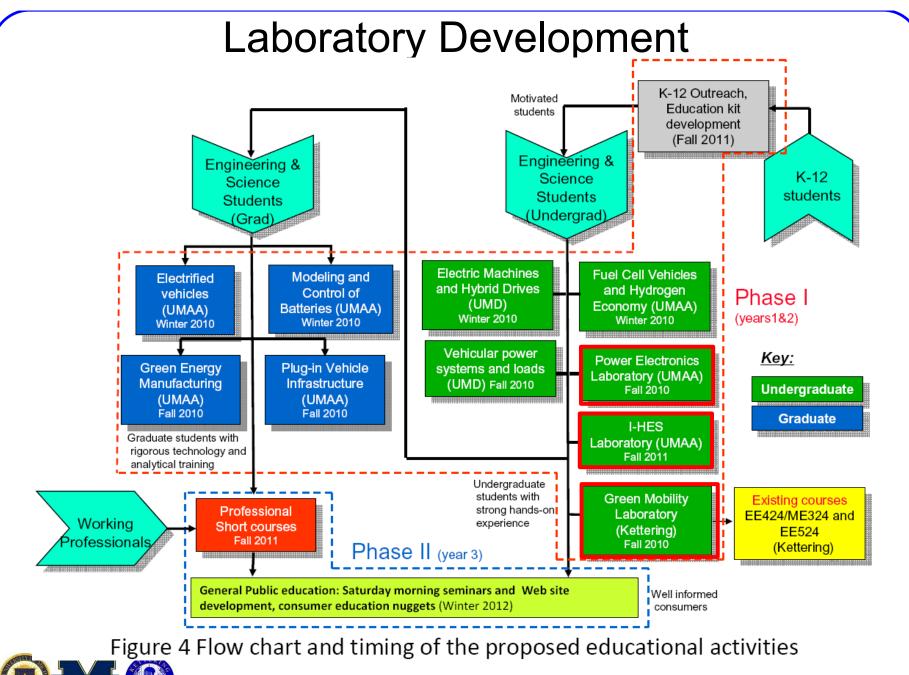
www.ni.com/academic/mindstorms

"I take from Jean Piaget a model of children as builders of their own intellectual structures. Children seem to be innately gifted learners, acquiring... knowledge by a process I call 'Piagetian Learning' or 'Learning without being taught'... If we really look at the 'child as a builder', we are on our way to [concluding that].... All builders need materials to build with". Quote from Mindstorms: Children, Computers, and Powerful Ideas by S. Papert.

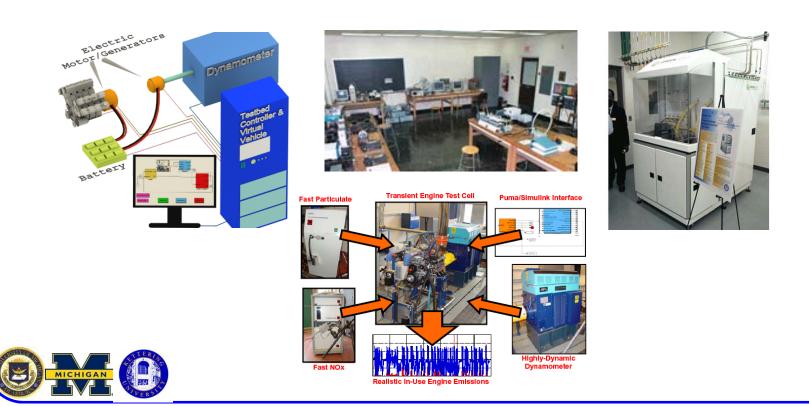


Educational Kit Development Progress (3)

Previous success stories...



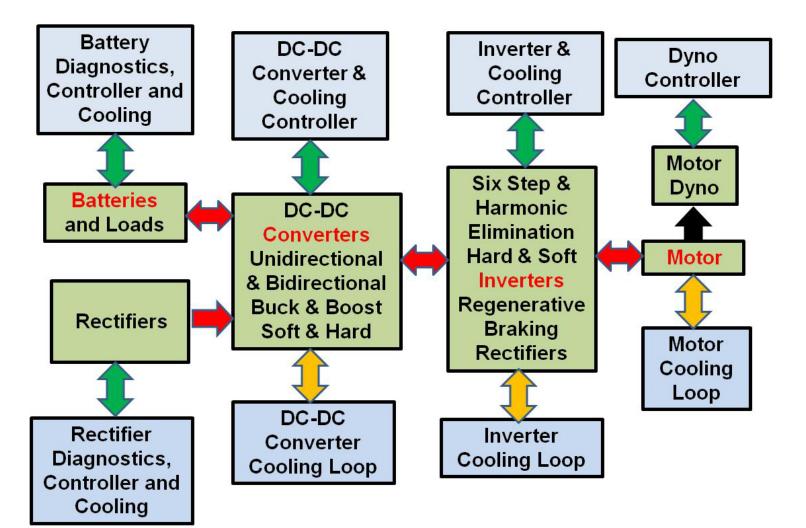
Undergraduate Research Opportunity (UROP) Project on Development of a Driver-in-the-Loop Simulator for Analyzing Impact of Driver-to-Driver Variability on Vehicle Emission Variability



- Develop a high-fidelity scaled toy car kit that mimics performance and energy consumption of electric vehicles, including PHEVs
 - Use toy car kit to introduce K-12 students to vehicle electrification
 - Also use kit for student competitions and summer camps
- Develop a high-fidelity "SimCity-like" videogame that allows K-12 students to explore design and control options for PHEVs
 - Build videogame around high-fidelity plug-in vehicle models
 - Use videogame as platform to introduce K-12 students to vehicle electrification concepts
- Introduce undergraduate engineering students to vehicle electrification by putting them in charge of developing above kits
- Integrate the kits to achieve combined simulation/handson experience

Laboratory Development

- Three Labs will be developed to support our undergraduate courses.
- Purchase/development will be done over the next 18 months.



Kettering Lab Development

- Four experimental stations, 4 kW power at each station to study:
 - Batteries
 - DC-DC converters
 - Inverters
 - Motors
- One system-level station for vehicle level modeling.
- Courses utilizing DOE Lab:
 - Power Electronics for ME/EE
 - 2 Hybrid Vehicle System Courses
 - 2 DOE Sponsored Hybrid Vehicle Technology Courses (EE5XX/EE5YY)

Elements at Each Lab Station

Equipment Purchase for Lab 401 at AA

- Timeline and the type of facility requires purchasing a turnkey solution from a single vendor
- Three contenders:
 - A&D
 - AVL
 - National Instruments and Wineman Technology Inc.
- Strategy: obtain the best possible configuration that fits into our budgeted:
 - Vendors understood that they need to provide at least 25% discount to fulfill the cost-sharing obligation
 - The "showcase" value of the lab is clearly communicated (to the vendors and to the University)

Collaboration

- This project involves three partner schools: UM Ann Arbor, UM Dearborn and Kettering University.
- Industrial collaborators that have been involved in our course and lab development include
 - GM, Ford, DTE, AVL, A&D, A123.
 - They serve the roles of equipment providers, invited lecturers, course material provider, and support our K-12 outreach activities.

Proposed Future Work

- Develop and offer
 - 504 Plug-in Vehicle Infrastructure (Fall 10, UMAA)
 - 402 Automotive Power Electronics Laboratory (Fall 10, UMAA)
 - 405 Vehicular Power Systems and Loads (Fall 10, UMD)
 - 406 Green Mobility Laboratory and associated courses (Fall 10, Kettering)
 - 503 Green Energy Manufacturing (Winter 11, UMAA)
 - 401 Integrated Hybrid Electric System Laboratory (Fall 11, UMAA)
 - 102 Development of an Education kit for Electric Automobiles (Fall 12)
 - 103 Saturday morning seminar series on Green Mobility and Web site development (Fall 12)

Expected Impacts

- In steady-state, the 10 credit courses are expected to impact 300-500 students annually.
- The short courses will impact 100-200 professional engineers annually.
- K-12 and other consumer education and outreach activities should impact > 1,000 annually.
- Final goal: job creation through training and education

