

Promises and Challenges of Lithium- and Manganese-Rich Transition-Metal Layered-Oxide Cathodes

Kevin Gallagher

Chemical Sciences and Engineering Division

Argonne National Laboratory

May 13-17th, 2013 Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, Washington D.C.

Project ID# ES177

Overview

Timeline

- Start: October 2012
- Finish: September 2013

Barriers

- Development of a PHEV and EV batteries that meet or exceed DOE/USABC goals.
 - Calculating total battery mass, volume, & cost from individual components
 - Predicting methods & materials that enable manufacturers to reach goals

Budget

- Total project funding
 - 100% DOE
- FY2013: \$115K (Voltage Fade)

Partners (Collaborators)

- ANL Voltage Fade Team
- ANL Cell Fabrication Facility

Project Objectives - Relevance

- Quantify materials level performance requirements of Li- and Mnrich layered transition metal oxide cathodes (LMR-NMC) necessary to significantly improve upon existing Li-ion cathodes (pack level cost and energy density)
- Document barriers that need to be overcome to achieve the higher level of performance

Milestones

- Map out performance and cost space for generic chemistries (Dec 2012) **complete**
- Initial assessment of LMR-NMC capacity and average voltage to outperform existing materials(Dec 2012) **complete**
- Finalize LMR-NMC material level properties required to meet DOE PHEV40 and EV goals (July 2013) **on target**
- Document state-of-the-art performance and barriers still remaining to overcome for LMR-NMC (Sept 2013) on target

Approach

- Utilize BatPaC: peer-reviewed, transparent, publicly available bottom-up Li-ion performance and cost model
 - Map out performance and cost space
 - Sensitivity of material properties
 - Quantified targets for material
- Leverage Argonne Voltage Fade team and published literature for state-of-the-art understanding of LMR-NMC materials
- Interact with OEMs and cell suppliers to understand their view of barriers at materials, cell, and system level

BatPaC v2.1 available from www.cse.anl.gov/batpac

Over 600 unique user downloads

Major Accomplishments and Technical Progress

- Mapped out performance and cost space
- Created first draft of positive electrode material level targets
- Detailed barriers impeding implementation

BatPaC approach to understanding cost & energy

- Designs Li-ion battery and required manufacturing facility based on user defined performance specifications for an assumed cell, module, and pack format
 - Power, energy, efficiency, cell chemistry, production volume
- Calculates the total cost to original equipment manufacturer (OEM) for the battery pack produced in the year 2020
 - Not modeling the cost of today's batteries but those produced by successful companies operating in 2020
 - Some advances have been assumed while most processes are similar to well-established high-volume manufacturing practices
- Efficient calculations completed in fractions of a second

BatPaC calculation overview

Iterate Over Governing Eqs. & Key Design Constraints

- Cell, module, & pack format
- Maximum electrode thickness
- Fraction of OCV at rated power

Pack specifications

- Power and energy (range)
- Number of cells

Cell Chemistry

- Area-specific impedance (ASI)
- Reversible capacity C/3
- OCV as function of SOC
- Physical properties

Mapping out performance and cost space

- Use EV150 battery, lower P/E ratio is less sensitive to ASI
 - Results will be more broadly applicable to other chemistries
 - 40 kWh_{Tot}, 100 kW, 360 V @ 100k/yr
- Materials properties default to NMC333/Gr when not overridden
 - Density, electrode porosity, ASI, etc
- Active material costs assumed in contour plots:
 - Positive \$30/kg; Negative \$20/kg
- Advanced Si composite anode assumed for capacity-voltage plots
 - 50% electrolyte volume fraction in discharged state
 - 1300 mAh/g; 80:10:10 active:carbon:binder
 - Prelithiated to achieve 85% 1st cycle efficiency

Constant voltage and ASI contour plots

- Steepest decent by increasing both electrode capacities
- Volumetric drives energy density (but active materials are \$/kg)
 - mAh/cm³ = $\rho \cdot \epsilon \cdot Q [g/cm_{act}^3 \cdot cm_{act}^3/cm_{elect}^3 \cdot mAh/g]$

3.5 V_{cell} for 40 kWh_{Tot}, 100 kW 360V

Positive voltage and capacity contour vs Si anode

- Diminishing returns for improving a single electrode capacity
- Increasing cell voltage key to improve performance and cost
- Contour plot shows transition between two regions
 - o < 500 mAh/cm³ (~210 mAh/g): capacity has stronger sensitivity
 - > 600 mAh/cm³ (~250 mAh/g): voltage has stronger sensitivity

DOE-EERE Vehicle Technologies Program – BatPaC available from www.cse.anl.gov/batpac

40 kWh_{Tot}, 100 kW 360V, Adv Si negative Positive properties similar to metal oxide

10

Contour plots takeaways

- Specific energy and cost strongly inversely correlated
- Diminishing returns for improving a single electrode capacity
- Increasing cell voltage key to improve performance and cost
- Volumetric capacity is a driver
 - Volume fraction and density of active material are important
 - Related to tap/tapped density (not a rigorous correlation)
- Inflection point from capacity to voltage impact is driven by electrode thickness limitation (100 microns in BatPaC)
 - Tortuous Li⁺ transport in electrolyte
 - Life and cold temperature performance
 - Manufacturing reliability and quality
 - All complex phenomena not well understood!
- We are limited to the materials that we have: e.g. LMR-NMC

LMR-NMC electrodes promise to lower cost

- Initial LMR-NMC analysis from contour plots
- Ranges for predicted LMR-NMC capacity and OCVs
- Ignore difference in active material price
 - NMC333 vs LMR-NMC: \$30-40/kg vs \$20-25/kg

DOE-EERE Vehicle Technologies Program – BatPaC available from www.cse.anl.gov/batpac

40 kWh_{Tot}, 100 kW 360V, Adv Si negative Positive properties similar to metal oxide

12

Promise of LMR-NMC positive electrodes

- xLi₂MnO₃·(1-x)LiMO₂ materials are under development worldwide to increase energy density and lower cost
 - Hypothesis: Li₂MnO₃ increases the stability of the layered structure
 - Thus, allowing access to higher reversible capacities
- High capacity shows synergy with advanced Li-ion negative
- Rich in manganese lowering \$/kg
- High in energy lowering \$/kWh
- Safety performance may be similar to NMC333*
 *Zonghai Chen et al. (Argonne) Poster ES035
- Some laboratory and industrial developers have demonstrated exciting progress to date

Tailor Li₂MnO₃ content to optimize Wh/kg

- $xLi_2MnO_3 \cdot (1-x)LiNi_{0.5}Mn_{0.5}O_2$
 - x = 0
 - 160 mAh/g, 3.78 U_{ave} vs Li
 - 605 Wh/kg vs Li
 - x= 0.10
 - 225 mAh/g, 3.81 U_{ave} vs Li
 - 857 Wh/kg vs Li
 - x= 0.30
 - 260 mAh/g, 3.67 U_{ave} vs Li
 - 954 Wh/kg vs Li
 - x= 0.50
 - 275 mAh/g, 3.58 U_{ave} vs Li
 - 985 Wh/kg vs Li
- Capacity and voltage tradeoff
 - xLi₂MnO₃ between 0.1 to 0.4 may be best

DOE-EERE Vehicle Technologies Program – BatPaC available from www.cse.anl.gov/batpac

Gravimetric capacity, mAh g⁻¹

Lithium half cells 2nd cycle 30°C @ 5 mA/g Jason Croy et al (Argonne)

Materials metrics for LMR-NMC: capacity vs voltage

- LMR-NMC must outperform the next best available material
- Assume this is a high performance NMC441*
 - $\text{Li}_{1.05}(\text{Ni}_{4/9}\text{Mn}_{4/9}\text{Co}_{1/9})_{0.95}\text{O}_2 \text{ or } 0.1\text{Li}_2\text{MnO}_3 \cdot 0.9\text{LiNi}_{0.497}\text{Mn}_{0.397}\text{Co}_{0.124}\text{O}_2$
 - Peak charge of 4.4 V vs Li, 175 mAh/g at C/3, U_{ave} = 3.90 V vs Li
 - Estimated price of positive active material
 - \$25-30/kg for NMC 441
 - \$20-25/kg for LMR-NMC
- C/3 Capacity and OCV targets:
 - 225 mAh/g and $U_{avg} > 3.55$ V vs Li
 - 250 mAh/g and $U_{avg} > 3.45$ V vs Li
 - 275 mAh/g and U_{avg} > 3.35 V vs Li
- 100 mV ≈ 25 mAh/g
- Average OCVs should be considered end of life values to account for voltage fade

LMR-NMC reduces positive electrode cost, >\$720

- Materials cost breakdown comparison
 - Assumes 225 mAh/g at C/3, 33% electrode porosity
 - Average LMR-NMC OCV, U_{ave}, of 3.76 V vs Li

DOE-EERE Vehicle Technologies Program – BatPaC available from www.cse.anl.gov/batpac

Challenges for LMR-NMC positive electrodes

- Voltage fade and hysteresis
 - Structural change in bulk of material
 - Lowers energy density and complicates SOC management
- Oxide surface reactions during first charge
 - Possibly related to high ASI at low SOC and TM ion dissolution
 - Mitigation attempts with coatings and additives may help
- Low rate capability
 - Good enough for EVs, but challenging for low mile PHEVs (High P/E)
- Volumetric capacity
 - Lower tap density: higher Li content and need for smaller particle size
- Systems level concern: Wide voltage window, especially with Si, may require DC/DC convertor to boost voltage

Future Work

- Finalize LMR-NMC material levels properties
 - With and without an advanced negative electrode
 - EV case (new USABC goals this summer)
 - PHEV40 case: also quantify C/1 energy and ASI at rated power
- Document SOA performance and barriers that may prevent commercial acceptance
 - Initial performance
 - Life and safety performance
 - Low-temperature performance
 - System level SOC and power management issues

Summary of promise and challenges of LMR-NMC

- Intermediate Li₂MnO₃ content may prove best performers
 - Trade-off between voltage and capacity
 - Contour plots teach
 - < 500 mAh/cm³ (~210 mAh/g): capacity has stronger sensitivity
 - > 600 mAh/cm³ (~250 mAh/g): voltage has stronger sensitivity
- LMR-NMC positive electrodes must outperform the next best available material: high performance, low cobalt metal oxides
- Many barriers still exist:
 - Impedance and life issues see significant improvements
 - Voltage fade phenomenon is challenging
 - Achieving high volumetric capacity requires additional engineering

Acknowledgements & Collaborators

- Support for this work from DOE-EERE, Office of Vehicle **Technologies is gratefully acknowledged**
 - David Howell & Peter Faguy

Collaborators:

- **Argonne National Laboratory**
 - Voltage fade team
 - Cell fabrication facility
 - J. Croy, A. Burrell, M. Balasubramanian, M. Thackeray
 - D. Dees, P. Nelson, M. Bettge, D. Abraham, W. Lu
- Silent partners cell suppliers and OEMs

