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Overview 

Timeline 
 Start: October 2012 
 Finish: September 2013 
 
 
 
 
  
 
 Budget 
 Total project funding 

– 100% DOE 
 FY2013: $115K (Voltage Fade) 

Barriers 
 Development of a PHEV and EV batteries 

that meet or exceed DOE/USABC goals. 
– Calculating total battery mass, volume, 

& cost from individual components 
– Predicting methods & materials that 

enable manufacturers to reach goals 
 
 

Partners (Collaborators) 
 ANL Voltage Fade Team 
 ANL Cell Fabrication Facility 

DOE-EERE Vehicle Technologies Program – BatPaC available from www.cse.anl.gov/batpac 
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Project Objectives - Relevance 
• Quantify materials level performance requirements of Li- and Mn-

rich layered transition metal oxide cathodes (LMR-NMC) necessary 
to significantly improve upon existing Li-ion cathodes (pack level 
cost and energy density) 

• Document barriers that need to be overcome to achieve the higher 
level of performance 

Milestones 
• Map out performance and cost space for generic chemistries (Dec 

2012) complete 
• Initial assessment of LMR-NMC capacity and average voltage to 

outperform existing materials(Dec 2012) complete 
• Finalize LMR-NMC material level properties required to meet DOE 

PHEV40 and EV goals (July 2013) on target  
• Document state-of-the-art performance and barriers still remaining 

to overcome for LMR-NMC (Sept 2013) on target   
DOE-EERE Vehicle Technologies Program – BatPaC available from www.cse.anl.gov/batpac 
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Approach 
 Utilize BatPaC: peer-reviewed, 

transparent, publicly available bottom-up 
Li-ion performance and cost model 

– Map out performance and cost space 
– Sensitivity of material properties 
– Quantified targets for material  

 

 Leverage Argonne Voltage Fade team and 
published literature for state-of-the-art 
understanding of LMR-NMC materials 
 

 Interact with OEMs and cell suppliers to 
understand their view of barriers at 
materials, cell, and system level 

53%

18%

13%

3% 13% Industry

University

Laboratory

Government

N/A

BatPaC v2.1 available from 
www.cse.anl.gov/batpac 

Over 600 unique user downloads 
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DOE-EERE Vehicle Technologies Program – BatPaC available from www.cse.anl.gov/batpac 
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Major Accomplishments and Technical Progress 

 Mapped out performance and cost space 
 Created first draft of positive electrode material level targets 
 Detailed barriers impeding implementation 

DOE-EERE Vehicle Technologies Program – BatPaC available from www.cse.anl.gov/batpac 

40 kWhTot, 100 kW 360V, Adv Si negative 40 kWhTot, 100 kW 360V, Adv Si negative 



BatPaC approach to understanding cost & energy 

 Designs Li-ion battery and required manufacturing facility based 
on user defined performance specifications for an assumed cell, 
module, and pack format 
– Power, energy, efficiency, cell chemistry, production volume 

 Calculates the total cost to original equipment manufacturer 
(OEM) for the battery pack produced in the year 2020 
– Not modeling the cost of today’s batteries but those produced by 

successful companies operating in 2020 
– Some advances have been assumed while most processes are similar 

to well-established high-volume manufacturing practices 

 Efficient calculations completed in fractions of a second 

6 

DOE-EERE Vehicle Technologies Program – BatPaC available from www.cse.anl.gov/batpac 
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BatPaC calculation overview 

Governing Equations 
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Total Cost to OEM 
• Materials & purchased items 
• Individual process steps 
• Overhead, depreciation, etc. 
• Warranty 

• Pack specifications 
- Power and energy (range) 

- Number of cells 

• Cell Chemistry 
- Area-specific impedance (ASI) 

- Reversible capacity C/3 

- OCV as function of SOC 

- Physical properties 
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Battery Pack 
Components 

• Volume 

• Mass 

• Materials 

• Heat generation 

Iterate Over Governing Eqs. 
 & Key Design Constraints 
• Cell, module, & pack format 

• Maximum electrode thickness 

• Fraction of OCV at rated power 

DOE-EERE Vehicle Technologies Program – BatPaC available from www.cse.anl.gov/batpac 
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Mapping out performance and cost space 

 Use EV150 battery, lower P/E ratio is less sensitive to ASI 
– Results will be more broadly applicable to other chemistries 
– 40 kWhTot, 100 kW, 360 V @ 100k/yr 

 Materials properties default to NMC333/Gr when not overridden 
– Density, electrode porosity, ASI, etc 

 Active material costs assumed in contour plots: 
– Positive $30/kg; Negative $20/kg 

 Advanced Si composite anode assumed for capacity-voltage plots 
– 50% electrolyte volume fraction in discharged state 
– 1300 mAh/g; 80:10:10 active:carbon:binder 
– Prelithiated to achieve 85% 1st cycle efficiency 

 
 
 

DOE-EERE Vehicle Technologies Program – BatPaC available from www.cse.anl.gov/batpac 
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Constant voltage and ASI contour plots 

 Steepest decent by increasing both electrode capacities 
 Volumetric drives energy density (but active materials are $/kg) 

– mAh/cm3= ρ·ε·Q [ g/cm3
act · cm3

act/cm3
elect · mAh/g] 

 
 
 

DOE-EERE Vehicle Technologies Program – BatPaC available from www.cse.anl.gov/batpac 

3.5 Vcell for 40 kWhTot, 100 kW 360V  

$/kWhTot WhTot/kg 

NMC333/Gr volumetric capacities 



$/kWhTot WhTot/kg 

10 

Positive voltage and capacity contour vs Si anode 

 Diminishing returns for improving a single electrode capacity 
 Increasing cell voltage key to improve performance and cost 
 Contour plot shows transition between two regions 

o < 500 mAh/cm3 (~210 mAh/g): capacity has stronger sensitivity 
o > 600 mAh/cm3 (~250 mAh/g): voltage has stronger sensitivity 

 

DOE-EERE Vehicle Technologies Program – BatPaC available from www.cse.anl.gov/batpac 40 kWhTot, 100 kW 360V, Adv Si negative 
Positive properties similar to metal oxide 
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Contour plots takeaways 

 Specific energy and cost strongly inversely correlated 
 Diminishing returns for improving a single electrode capacity 
 Increasing cell voltage key to improve performance and cost 
 Volumetric capacity is a driver 

– Volume fraction and density of active material are important 
– Related to tap/tapped density (not a rigorous correlation) 

 Inflection point from capacity to voltage impact is driven by 
electrode thickness limitation (100 microns in BatPaC) 
– Tortuous Li+ transport in electrolyte 
– Life and cold temperature performance 
– Manufacturing reliability and quality 
– All complex phenomena not well understood! 

 We are limited to the materials that we have: e.g. LMR-NMC 
DOE-EERE Vehicle Technologies Program – BatPaC available from www.cse.anl.gov/batpac 



$/kWhTot WhTot/kg 
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LMR-NMC electrodes promise to lower cost 

 Initial LMR-NMC analysis from contour plots 
 Ranges for predicted LMR-NMC capacity and OCVs 
 Ignore difference in active material price 

– NMC333 vs LMR-NMC: $30-40/kg vs $20-25/kg 
 

DOE-EERE Vehicle Technologies Program – BatPaC available from www.cse.anl.gov/batpac 40 kWhTot, 100 kW 360V, Adv Si negative 
Positive properties similar to metal oxide 

NMC333/Adv Si negative LMR-NMC/Adv Si negative 
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Promise of LMR-NMC positive electrodes 

 xLi2MnO3·(1-x)LiMO2  materials are under development 
worldwide to increase energy density and lower cost 
– Hypothesis: Li2MnO3 increases the stability of the layered structure 
– Thus, allowing access to higher reversible capacities 

 High capacity shows synergy with advanced Li-ion negative 
 Rich in manganese lowering $/kg 
 High in energy lowering $/kWh 
 Safety performance may be similar to NMC333* 

 *Zonghai Chen et al. (Argonne) Poster ES035 

 
 Some laboratory and industrial developers have demonstrated 

exciting progress to date 

DOE-EERE Vehicle Technologies Program – BatPaC available from www.cse.anl.gov/batpac 
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Tailor Li2MnO3 content to optimize Wh/kg 

 xLi2MnO3·(1-x)LiNi0.5Mn0.5O2 
– x = 0 

• 160 mAh/g, 3.78 Uave vs Li 
• 605 Wh/kg vs Li 

– x= 0.10 
• 225 mAh/g, 3.81 Uave vs Li 
• 857 Wh/kg vs Li 

– x= 0.30 
• 260 mAh/g, 3.67 Uave vs Li 
• 954 Wh/kg vs Li 

– x= 0.50 
• 275 mAh/g, 3.58 Uave vs Li 
• 985 Wh/kg vs Li 

 Capacity and voltage tradeoff 
– xLi2MnO3 between 0.1 to 0.4 may be best 

DOE-EERE Vehicle Technologies Program – BatPaC available from www.cse.anl.gov/batpac 

Lithium half cells 
2nd cycle 30°C @ 5 mA/g 

Jason Croy et al (Argonne) 
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Materials metrics for LMR-NMC: capacity vs voltage 

 LMR-NMC must outperform the next best available material 
 Assume this is a high performance NMC441* 

– Li1.05(Ni4/9Mn4/9Co1/9)0.95O2 or 0.1Li2MnO3·0.9LiNi0.497Mn0.397Co0.124O2 
– Peak charge of 4.4 V vs Li, 175 mAh/g at C/3, Uave = 3.90 V vs Li 
– Estimated price of positive active material 

• $25-30/kg for NMC 441 
• $20-25/kg for LMR-NMC 

*S.-H. Kang et al. J. Electrochem. Soc. 158 (8) A936 (2011) 

 
 C/3 Capacity and OCV targets: 

– 225 mAh/g and Uavg > 3.55 V vs Li 
– 250 mAh/g and Uavg > 3.45 V vs Li 
– 275 mAh/g and Uavg > 3.35 V vs Li 

 100 mV ≈ 25 mAh/g 
 Average OCVs should be 

considered end of life values to 
account for voltage fade 
 

DOE-EERE Vehicle Technologies Program – BatPaC available from www.cse.anl.gov/batpac 
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LMR-NMC reduces positive electrode cost, >$720 

 Materials cost breakdown comparison 
– Assumes 225 mAh/g at C/3, 33% electrode porosity 
– Average LMR-NMC OCV, Uave, of 3.76 V vs Li 

DOE-EERE Vehicle Technologies Program – BatPaC available from www.cse.anl.gov/batpac 



17 

Challenges for LMR-NMC positive electrodes 

 Voltage fade and hysteresis 
– Structural change in bulk of material 
– Lowers energy density and complicates SOC management 

 Oxide surface reactions during first charge 
– Possibly related to high ASI at low SOC and TM ion dissolution 
– Mitigation attempts with coatings and additives may help 

 Low rate capability 
– Good enough for EVs, but challenging for low mile PHEVs (High P/E) 

 Volumetric capacity 
– Lower tap density: higher Li content and need for smaller particle size 

 
 Systems level concern: Wide voltage window, especially with Si, 

may require DC/DC convertor to boost voltage 
DOE-EERE Vehicle Technologies Program – BatPaC available from www.cse.anl.gov/batpac 



Vehicle Technologies Program 
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Future Work 

• Finalize LMR-NMC material levels properties 
• With and without an advanced negative electrode 
• EV case (new USABC goals this summer) 
• PHEV40 case: also quantify C/1 energy and ASI at rated power 

 
• Document SOA performance and barriers that may prevent 

commercial acceptance 
• Initial performance 
• Life and safety performance 
• Low-temperature performance  
• System level SOC and power management issues 
 



Summary of promise and challenges of LMR-NMC 

 Intermediate Li2MnO3 content may prove best performers 
– Trade-off between voltage and capacity 
– Contour plots teach 

• < 500 mAh/cm3 (~210 mAh/g): capacity has stronger sensitivity 
• > 600 mAh/cm3 (~250 mAh/g): voltage has stronger sensitivity 

 LMR-NMC positive electrodes must outperform the next best 
available material: high performance, low cobalt metal oxides 

 Many barriers still exist: 
– Impedance and life issues see significant improvements 
– Voltage fade phenomenon is challenging 
– Achieving high volumetric capacity requires additional engineering 
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Vehicle Technologies Program 
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